The relationship between thermal insulation and heat source in shaping the energy efficiency of residential buildings: a case study of Poland
Article Sidebar
Open full text
Issue Vol. 24 No. 2 (2025)
-
Problems of introducing the betterment levy
Oliwia Nowakowska, Agnieszka Pęska-Siwik, Kamil Maciuk005-019
-
Adhesion analysis between geopolymer and mineral-asphalt composite
Krzysztof Granatyr021-032
-
Developing an integrated cadastre model of land and real estate in a single setting in Ukraine: key aspects and problems
Nazar Stupen, Mariia Melnyk033-044
-
Evaluation of the orientation of residential buildings in Mashhad based on direct solar radiation reception
Mostafa Habibi, Mohammadhossein Azizibabani045-056
-
Comprehensive material activation of concrete structures
Oksana Korobko, Valerii Vyrovoy, Iryna Grynyova, Pavlo Vegera057-073
-
Durability assessment of bio-based self-compacting sand concrete with recycled granite aggregate waste against chloride and sulphate attacks
Hadjadj Moussa , Mohamed Guendouz, Djamila Boukhelkhal075-094
-
An overview of radiation exposure effects on concrete in nuclear power plants
Karol Skiba, Roman Kinasz095-110
-
Abilities and limitations in counteracting urban heat islands
Michał Musiał, Anna Pomykała, Lech Lichołai111-131
-
Influence of urban changes on the efficiency of ventilation paths
Katarzyna Klemm, Weronika Chojna, Anna Dominika Bochenek133-156
-
Analysis of the current state of the compositional ensemble of Yerevan's central square: challenges and proposed solutions
Zhora Sagaryan, Karen Azatyan157-189
-
Mechanical strength and environmental impacts of eco-self-compacting mortar containing dune sand in the Oued-Souf region of Algeria as cementitious materials
Moussa Hadjadj, Youcef Toumi, Selma Lounis, Merouane Guettioui191-206
-
Effect of environmental conditions on the characteristics of GFRP plates using non-destructive testing techniques
Mohammed-Amin Boumehraz, Kamel Goudjil, Brahim Baali, Mekki Mellas, Achref Hamaidia, Djamel Djeghader, Farida Boucetta207-217
-
The relationship between thermal insulation and heat source in shaping the energy efficiency of residential buildings: a case study of Poland
Aneta Biała219-233
Archives
-
Vol. 24 No. 3
2025-09-30 13
-
Vol. 24 No. 2
2025-06-25 13
-
Vol. 24 No. 1
2025-03-31 12
-
Vol. 23 No. 4
2025-01-02 11
-
Vol. 23 No. 3
2024-10-07 10
-
Vol. 23 No. 2
2024-06-15 8
-
Vol. 23 No. 1
2024-03-29 6
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 20 No. 4
2021-12-29 6
-
Vol. 20 No. 3
2021-10-29 8
-
Vol. 20 No. 2
2021-06-02 8
-
Vol. 20 No. 1
2021-02-09 8
Main Article Content
DOI
Authors
Abstract
The energy efficiency of residential buildings results from the complex interplay of thermal insulation parameters of building envelopes, ventilation systems, and heat sources. This article examines these interdependencies in the context of reducing the EP (primary energy) index, considering the standards effective from 2021. The study highlights that improving the thermal insulation of external walls plays a pivotal role in lowering the EP index, surpassing the effects of roof or ground floor insulation. The findings reveal that the benefits of reducing the U-value vary depending on the heat source. The greatest savings were observed in buildings with electric heating, while buildings equipped with heat pumps showed limited benefits due to their high efficiency (COP). Furthermore, the application of mechanical ventilation improves a building’s energy performance, particularly when combined with traditional heat sources. In contrast, its impact is minimal in buildings with heat pumps. The results emphasise the importance of an integrated approach to building design, accounting for the interactions between envelope insulation, ventilation systems, and heat sources. It is recommended to optimise thermal parameters and invest in modern heating and ventilation technologies to achieve significant energy savings and meet stringent climate requirements.
Keywords:
References
J. A. Pogorzelski, Fizyka Cieplna Budowli, Warszawa: Państwowe Wydawnictwo Naukowe, 1979.
T. Defraeye, B. Blocken i J. Carmeliet, „Convective heat transfer coefficients for exterior building surfaces: Existing correlations and CFD modelling,” Energy Conversion and Management, tom 52, pp. 512-522, 2011. DOI: https://doi.org/10.1016/j.enconman.2010.07.026
W. Natephra, N. Yabuki i T. Fukuda, „Optimizing the evaluation of building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation,” Building and Environment, tom 136, pp. 128-145, 2018. DOI: https://doi.org/10.1016/j.buildenv.2018.03.032
C. Deb, L. V. Gelder, M. Spiekman, G. Pandraud, R. Jack i R. Fitton, „Measuring the heat transfer coefficient (HTC) in buildings: A stakeholder's survey,” Renewable and Sustainable Energy Reviews, tom 144, p. 111008, 2021. DOI: https://doi.org/10.1016/j.rser.2021.111008
H. Jedrzejuk i W. Marks, „Optimization of shape and functional structure of buildings as well as heat source utilisation example,” Building and Environment, tom 37, pp. 1249-1253, 2002. DOI: https://doi.org/10.1016/S0360-1323(01)00100-7
J. Iwaro i A. Mwasha, „A review of building energy regulation and policy for energy conservation in developing countries,” Energy Policy, tom 38, pp. 7744-7755, 2010. DOI: https://doi.org/10.1016/j.enpol.2010.08.027
R. Bruno, V. Ferraro, P. Bevilacqua i N. Arcuri, „On the assessment of the heat transfer coefficients on building components: A comparison between modeled and experimental data,” Building and Environment, tom 216, p. 108995, 2022. DOI: https://doi.org/10.1016/j.buildenv.2022.108995
P. A. Fokaides i S. A. Kalogirou, „Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes,” Applied Energy, tom 88, pp. 4358-4365, 2011. DOI: https://doi.org/10.1016/j.apenergy.2011.05.014
S. B. Sadineni, S. Madala i R. F. Boehm, „Passive building energy savings: A review of building envelope components,” Renewable and Sustainable Energy Reviews, tom 15, pp. 3617-3631, 2011. DOI: https://doi.org/10.1016/j.rser.2011.07.014
M. Bilardo, S. Galatà i E. Fabrizio, „The role of Primary Energy Factors (PEF) for electricity in the evaluation and comparison of building energy performance: An investigation on European nZEBs according to EN 17423:2020,” Sustainable Cities and Society, tom 87, p. 104189, 2022. DOI: https://doi.org/10.1016/j.scs.2022.104189
M. Sobolewski, „Wykorzystanie współczynników przejmowania ciepła w projektowaniu i badaniach termicznych przegród zewnętrznych budynków,” Acta Scientiarum Polonorum. Architectura 15.1, pp. 41-53, 2016.
Dz.U. 2022 poz.1225, Obwieszczenie Ministra Rozwoju i Technologii z dnia 15 kwietnia 2022 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.
F. R. d’Ambrosio Alfano, B. W. Olesen, B. I. Palella i G. Riccio, „Thermal comfort: Design and assessment for energy saving,” Energy and Buildings, tom 81, pp. 326-336, 2014. DOI: https://doi.org/10.1016/j.enbuild.2014.06.033
DZ.U.2015 poz.376, Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015r. W sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej, 2015.04.18.,.
PN-B-02405:53 i 57, „Współczynniki przenikania ciepła k dla przegród budowlanych”.
PN-64/B-03404, „Współczynnik przenikania ciepła K dla przegród budowlanych”.
PN-74/B-03404-, „ Współczynnik przenikania ciepła K dla przegród budowlanych”.
P.-8.-0. –, „Ochrona cieplna budynków”.
P.-9.-0. –, „ Ochrona cieplna budynków”.
D. 1. n. 1. p. 878, „Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 30 września 1997 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.”.
D. U. n. 7. p. 6. z. p. zmianami, Rozporządzenie Ministra Infrastruktury z dn 12 kwietnia 2002r., zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.
D. U. n. 7. p. 6. z. p. zm, „Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.”.
p. 6. z. p. z. Dz. U. nr 75, Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013r.,, zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.
X. Shi, Z. Tian, W. Chen, B. Si i X. Jin, „A review on building energy efficient design optimization rom the perspective of architects,” Renewable and Sustainable Energy Reviews, tom 65, pp. 872-884, 2016. DOI: https://doi.org/10.1016/j.rser.2016.07.050
C. Chengmin, Z. Yufeng i M. Lijun, „Assessment for central heating systems with different heat sources: A case study,” Energy and Buildings, tom 48, pp. 168-174, 2012. DOI: https://doi.org/10.1016/j.enbuild.2012.01.025
W. DOŁĘGA, „Wykorzystanie odnawialnych źródeł energii w,” VII Lubuska Konferencja Naukowo-Techniczna – i-MITEL 2012, 2012.
A.-J. N. Khalifa, „Natural convective heat transfer coefficient – a review: I. Isolated vertical and horizontal surfaces,” Energy Conversion and Management, tom 42, pp. 491-504, 2001. DOI: https://doi.org/10.1016/S0196-8904(00)00042-X
C. Filippín i S. Flores Larsen, „Energy efficiency in buildings,” Energy Efficiency Research, pp. 153-166, January 2009.
Article Details
Abstract views: 189
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
