Abilities and limitations in counteracting urban heat islands
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
The article presents observational and simulation trends that have been used to mitigate the urban heat island phenomenon. Due to extensive progress in computing, researchers have focused on methods based on artificial intelligence. AI offers significant potential in counteracting UHIs through rapid temperature prediction, high-resolution mapping, optimisation of green spaces, and decision support. While AI models can expedite predictions, their precision may still lag behind traditional numerical weather prediction methods. The presented tools have major limitations, including the complexity of applying artificial intelligence to process the large datasets generated during city operations. The article presents the advantages of using AI algorithms to mitigate urban heat islands, which include more efficient management of energy, heating, and water infrastructure, as well as support in urban analysis. The ability to process vast amounts of data allows for more effective use of energy and water resources in buildings while continuously improving the algorithm. The literature review involved a comparison of current methods used to counteract urban heat islands, as well as existing and potential applications of artificial intelligence algorithms described in the Scopus and Web of Science databases. The analysis included the classification of the main groups of AI algorithms, their capabilities and limitations in mitigating urban heat islands, and an overview of the main trends in contemporary scientific articles on the use of AI in architecture. The selection criteria for the literature included the publication period (2016–2024), the applicability of the described solutions, and the current limitations and disadvantages of their use. The article highlights the main challenges in the widespread adoption of artificial intelligence in architecture.
Keywords:
References
[1] Qiao, Z., Wang, N., Chen, J., He, T., Xu, X., Liu, L., Sun, Z., Han, D. Urbanization accelerates urban warming by changing wind speed: Evidence from China based on 2421 meteorological stations from 1978 to 2017. Environ. Impact Assess. Rev. 2023, 102107189. https://doi.org/10.1016/j.eiar.2023.107189 DOI: https://doi.org/10.1016/j.eiar.2023.107189
[2] Pearson, A. Creating Utopia or Gomorrah? ASHRAE J.2016 58(4), 76.
[3] Posudin, Y. (2014). Methods of Measuring Environmental Parameters. Methods of Measuring Environmental Parameters2015, 9781118686. https://doi.org/10.1002/9781118914236 DOI: https://doi.org/10.1002/9781118914236
[4] Chapman, S., Thatcher, M., Salazar, A., Watson, J.E.M., McAlpine, C.A., The impact of climate change and urban growth on urban climate and heat stress in a subtropical city. Int. J. Climatol. 2019 39(6), 3013. https://doi.org/10.1002/joc.5998 DOI: https://doi.org/10.1002/joc.5998
[5] Jabbar, H.K., Hamoodi, M.N., Al-Hameedawi, A.N., Urban heat islands: a review of contributing factors, effects and data. IOP Conference Series: Earth and Environmental Science, 2023, 1129(1). https://doi.org/10.1088/1755-1315/1129/1/012038 DOI: https://doi.org/10.1088/1755-1315/1129/1/012038
[6] Jopek, D., Czynniki kształtujące przestrzenną formę miasta. Rozwój Regionalny I Polityka Regionalna, (42), 81–89. https://doi.org/10.14746/rrpr.2018.42.06 DOI: https://doi.org/10.14746/rrpr.2018.42.06
[7] Wang, M., Xu, H., Analyzing the Influence of Urban Forms on Surface Urban Heat Islands Intensity in Chinese Mega Cities. J. Geogr. Inf. Sci., 2018, 20(12), 1787. https://doi.org/10.12082/dqxxkx.2018.180257
[8] Su, H., Han, G., Li, L., Qin, H., The impact of macro-scale urban form on land surface temperature: An empirical study based on climate zone, urban size and industrial structure in China. Sustainable Cities Soc. 2021 74. 103217. https://doi.org/10.1016/j.scs.2021.103217 DOI: https://doi.org/10.1016/j.scs.2021.103217
[9] Ruddell, D., Brazel, A., Chow, W., Middle, A., The Urban Heat Island Effect and Sustainability Science: Causes, Impacts, and Solutions. Sustainability for the 21st Century, 2020, https://sustainabilitysolutions.usc.edu/wp-content/uploads/2019/04/ [Access: 24.06.2024]
[10] Shahraiyni, H.T., Sodoudi, S., El-Zafarany, A., elSeoud, T.A., Ashraf, H., Krone, K.,A comprehensive statistical study on daytime surface urban heat island during summer in urban areas, case study: Cairo and its new towns. Remote Sens. 2016, 8(8). https://doi.org/10.3390/rs8080643 DOI: https://doi.org/10.3390/rs8080643
[11] Martin, P., Baudouin, Y., Gachon, P., An alternative method to characterize the surface urban heat island. Int. J. Biometeorol. 2015, 59(7), 849. https://doi.org/10.1007/s00484-014-0902-9 DOI: https://doi.org/10.1007/s00484-014-0902-9
[12] Tahooni, A., Kakroodi, A.A., Relationships between land use/land cover and land surface temperature in tabriz from 2000 to 2017. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2019, 42(4/W18), 1041, https://doi.org/10.5194/isprs-archives-XLII-4-W18-1041-2019 DOI: https://doi.org/10.5194/isprs-archives-XLII-4-W18-1041-2019
[13] Jabbar, H. K., Hamoodi, M. N., Al-Hameedawi, A. N., Variation in diurnal and seasonal surface urban heat island intensity across different climatic zones. AIP Conference Proceedings 2023, 2793(1). https://doi.org/10.1063/5.0163057 DOI: https://doi.org/10.1063/5.0163057
[14] Wang, Y., Li, X., Zhang, C., He, W., Influence of spatiotemporal changes of impervious surface on the urban thermal environment: A case of Huai’an central urban area. Sustainable Cities Soc. 2022, 79. 103710. https://doi.org/10.1016/j.scs.2022.103710 DOI: https://doi.org/10.1016/j.scs.2022.103710
[15] Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., Boutouil, M.,Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. Civ. Eng. 2021, 2(2), 459. https://doi.org/10.3390/civileng2020026 DOI: https://doi.org/10.3390/civileng2020026
[16] Zhang, Y., Zhang, A., Sun, G., Fu, H., Yao, Y. (2022). Exploring the Influence and Time Variation of Impervious Surface Materials on Urban Surface Heat Island. International Geoscience and Remote Sensing Symposium (IGARSS) 2022, 6276. https://doi.org/10.1109/IGARSS46834.2022.9884657 {available 24.06.2024 } DOI: https://doi.org/10.1109/IGARSS46834.2022.9884657
[17] Arifwidodo, S.D., Ratanawichit, P., Chandrasiri, O.,Understanding the Implications of Urban Heat Island Effects on Household Energy Consumption and Public Health in Southeast Asian Cities: Evidence from Thailand and Indonesia. Advances in 21st Century Human Settlements 2021. https://doi.org/10.1007/978-981-15-5608-1_3 DOI: https://doi.org/10.1007/978-981-15-5608-1_3
[18] Heaviside, C., Macintyre, H., Vardoulakis, S., The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. 2017, 4(3), 296 https://doi.org/10.1007/s40572-017-0150-3 DOI: https://doi.org/10.1007/s40572-017-0150-3
[19] Ren, J., Shi, K., Li, Z., Kong, X., Zhou, H. A Review on the Impacts of Urban Heat Islands on Outdoor Thermal Comfort. Buildings, 2023 13(6). https://doi.org/10.3390/buildings13061368 DOI: https://doi.org/10.3390/buildings13061368
[20] Cichowicz, R., Bochenek, A. D., (2024). Assessing the effects of urban heat islands and air pollution on human quality of life. Anthropocene 2024 46, 100433. https://doi.org/10.1016/J.ANCENE.2024.100433 DOI: https://doi.org/10.1016/j.ancene.2024.100433
[21] Mushtaha, E., Shareef, S., Alsyouf, I., Mori, T., Kayed, A., Abdelrahim, M., Albannay, S., (2021). A study of the impact of major Urban Heat Island factors in a hot climate courtyard: The case of the University of Sharjah, UAE. Sustainable Cities Soc. 2021, 69, 102844. https://doi.org/10.1016/J.SCS.2021.102844 DOI: https://doi.org/10.1016/j.scs.2021.102844
[22] Boccalatte, A., Thebault, M., Paolini, R., Fossa, M., Ramousse, J., Ménézo, C., Santamouris, M., Assessing the combined effects of local climate and mounting configuration on the electrical and thermal performance of photovoltaic systems. Application to the greater Sydney area. Renewable Energy, 2023 219. https://doi.org/10.1016/J.RENENE.2023.119478 DOI: https://doi.org/10.1016/j.renene.2023.119478
[23] Zhang, Y., Geng, P., Sivaparthipan, C.B., Muthu, B.A., Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustainable Energy Technol. Assess. 2021 45, 100986. https://doi.org/10.1016/J.SETA.2020.100986 DOI: https://doi.org/10.1016/j.seta.2020.100986
[24] Castaldo, V. L., Pisello, A. L. (2019). How urban mitigation technologies can contribute to decrease the cooling demand of buildings. Cooling Energy Solutions For Buildings And Cities 2019. https://doi.org/10.1142/9789813236974_0010 DOI: https://doi.org/10.1142/9789813236974_0010
[25] Sakhniuk, S., Zatserkovnyi, V., Ilchenko, A., Odarchuk, N., Mironchuk, T., Monitoring of heat islands based on the data of the Sentinel 2 MSI satellites: MultiSpectral Instrument, Level-1C and MODIS sensors on the example of the territories of Kyiv and Rome. International Conference of Young Professionals “GeoTerrace 2023”, 2023. https://doi.org/10.3997/2214-4609.2023510112 DOI: https://doi.org/10.3997/2214-4609.2023510112
[26] Paoletti, E., Conese, I., Bacci, L., Urban vegetation facing pollution and over-heating. Global Environmental Change. 2014.https://doi.org/10.1007/978-94-007-5784-4_17 {available 24.06.2024} DOI: https://doi.org/10.1007/978-94-007-5784-4_17
[27] Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M., Morgan, E. A., Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Cleaner Prod.2018, 171, 1140. https://doi.org/10.1016/j.jclepro.2017.10.086 DOI: https://doi.org/10.1016/j.jclepro.2017.10.086
[28] Yao, Y., Chen, X., Qian, J., Research progress on the thermal environment of the urban surfaces. Shengtai Xuebao, 2016 38(3), 1134. https://doi.org/10.5846/stxb201611022233 DOI: https://doi.org/10.5846/stxb201611022233
[29] Ampatzidis, P., Cintolesi, C., di Sabatino, S., Kershaw, T., Blue space effects on urban flow and pollution dispersion in a stable atmosphere. Urban Clim.2024, 55. 101898, https://doi.org/10.1016/j.uclim.2024.101898 DOI: https://doi.org/10.1016/j.uclim.2024.101898
[30] Liu C., Lu S., Tian J., Yin L., Wang L., Zheng W., Research Overview on Urban Heat Islands Driven by Computational Intelligence, Land 2024, 13(12), 2176. https://doi.org/10.3390/land13122176 DOI: https://doi.org/10.3390/land13122176
[31] Bibri, S. E., Krogstie, J., Kaboli, A., Alahi, A.,Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ. Sci. Ecotechnol.202419, 100330. https://doi.org/10.1016/J.ESE.2023.100330 DOI: https://doi.org/10.1016/j.ese.2023.100330
[32] Nguyen, H., Nawara, D., Kashef, R. (2024). Connecting the indispensable roles of IoT and artificial intelligence in smart cities: A survey. J. Inf. Intell.2024, 2(3), 261. https://doi.org/10.1016/J.JIIXD.2024.01.003 DOI: https://doi.org/10.1016/j.jiixd.2024.01.003
[33] Jia, Y., Gu, Z., Du, L., Long, Y., Wang, Y., Li, J., Zhang, Y.,Artificial intelligence enabled cyber security defense for smart cities: A novel attack detection framework based on the MDATA model. Knowledge-Based Syst. 2023, 276, 110781. https://doi.org/10.1016/J.KNOSYS.2023.110781 DOI: https://doi.org/10.1016/j.knosys.2023.110781
[34] Gokul, P.R., Mathew, A., Bhosale, A., Nair, A.T., Spatio-temporal air quality analysis and PM2.5 prediction over Hyderabad City, India using artificial intelligence techniques. Ecol. Inf. 2023, 76, 102067. https://doi.org/10.1016/J.ECOINF.2023.102067 DOI: https://doi.org/10.1016/j.ecoinf.2023.102067
[35] Niu, W., Luo, T., Yao, X., Gong, J., Huang, Q., Gao, H., Feng, Z., Artificial intelligence-based response surface progressive optimality algorithm for operation optimization of multiple hydropower reservoirs. Energy, 2024 291, 130449. https://doi.org/10.1016/J.ENERGY.2024.130449 DOI: https://doi.org/10.1016/j.energy.2024.130449
[36] Oladosu, T.L., Pasupuleti, J., Kiong, T.S., Koh, S.P.J., Yusaf, T., Energy management strategies, control systems, and artificial intelligence-based algorithms development for hydrogen fuel cell-powered vehicles: A review. International Journal of Hydrogen Energy, 2024 61, 1380. https://doi.org/10.1016/J.IJHYDENE.2024.02.284 DOI: https://doi.org/10.1016/j.ijhydene.2024.02.284
[37] Selvaraj, R., Kuthadi, V.M., Baskar, S., Smart building energy management and monitoring system based on artificial intelligence in smart city. Sustainable Energy Technol. Assess. 2023 56, 103090. https://doi.org/10.1016/J.SETA.2023.103090 DOI: https://doi.org/10.1016/j.seta.2023.103090
[38] Sharifi, A., Tarlani Beris, A., Sharifzadeh Javidi, A., Nouri, M., Gholizadeh Lonbar, A., Ahmadi, M., Application of artificial intelligence in digital twin models for stormwater infrastructure systems in smart cities. Adv. Eng. Inf. 2024 61, 102485. https://doi.org/10.1016/J.AEI.2024.102485 DOI: https://doi.org/10.1016/j.aei.2024.102485
[39] Rjab, A. ben, Mellouli, S., Corbett, J., Barriers to artificial intelligence adoption in smart cities: A systematic literature review and research agenda. Gov. Inf. Q. 2023 40(3), 101814. https://doi.org/10.1016/J.GIQ.2023.101814 DOI: https://doi.org/10.1016/j.giq.2023.101814
[40] Amirteimoori, A., Allahviranloo, T., Zadmirzaei, M., Hasanzadeh, F., On the environmental performance analysis: A combined fuzzy data envelopment analysis and artificial intelligence algorithms. Expert Syst. Appl. 2023 224, 119953. https://doi.org/10.1016/J.ESWA.2023.119953 DOI: https://doi.org/10.1016/j.eswa.2023.119953
[41] Feng, Y., Chen, L., He, X. Sky View Factor Calculation based on Baidu Street View Images and Its Application in Urban Heat Island Study, Journal of Geo-Information Science, 2021 23(11), 1998–2012. https://doi.org/10.12082/dqxxkx.2021.200747
[42] Shi, B., Wang, X., Zhao, D. Numerical simulation of the effects of sky-view factor on thermal environment in urban residential districts. J. Appl. Mech. 2017 34(6), 1181. https://doi.org/10.11776/cjam.34.06.D067
[43] Liu, Z., Hu, L., Chen, H., Exploring the combined cooling effect of street canyon geometry and the surrounding built environment. Environ Sci. Pollut Res.2024 31, 28507. https://doi.org/10.1007/s11356-024-33012-7 DOI: https://doi.org/10.1007/s11356-024-33012-7
[44] Sen, S., Roesler, J.R., An uncoupled pavement-urban canyon model for heat islands. Pavement Life-Cycle Assessment - Proceedings of the Pavement Life-Cycle Assessment Symposium, 2017, 111. https://doi.org/10.1201/9781315159324-13 DOI: https://doi.org/10.1201/9781315159324-13
[45] Guneroglu, N., Landscaping strategies in reducing urban heat island effects. In Planning, Design, Applications Theories, Techniques, Strategies: For Spatial Planners Designers. 2020.
[46] Le, M.T., Shukurov, I., Shukurova, L., Dmitrieva, A., A Study Case of Mathematical Calculation of Urban Heat Island Intensity Based on Urban Geometry. In Lecture Notes in Civil Engineering, 2020. https://doi.org/10.1007/978-3-030-42351-3_33
[47] Aly, A.M., Goodlow, B., Conerly, J., Urban heat island mitigation via geometric configuration. Theor. Appl. Climatol. 2022, 149, 1329. https://doi.org/10.1007/s00704-022-04116-2 DOI: https://doi.org/10.1007/s00704-022-04116-2
[48] Butera, F.M., Sustainable Neighborhood Design in Tropical Climates. Urban Energy Transit. 2018, 51-73. https://doi.org/10.1016/B978-0-08-102074-6.00017-6 DOI: https://doi.org/10.1016/B978-0-08-102074-6.00017-6
[49] Sedláček, J., Hais, M., Pouchová, K. (2022). Green and blue infrastructure: means of reducing surface temperatures in the urban environment. Int. J. Environ. Sustainable Dev.2022 21(4), 388. https://doi.org/10.1504/ijesd.2022.126078 DOI: https://doi.org/10.1504/IJESD.2022.126078
[50] Lonardo, S.D., Mariani, S., Giagnacovo, G., Raimondi, S., Green infrastructures for the energetic and environmental Sustainability of cities. Rivista di Studi sulla Sostenibilita. 2019 2, 79. https://doi.org/10.3280/RISS2019-002-S1006 DOI: https://doi.org/10.3280/RISS2019-002-S1006
[51] Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A.L., Rossi, F., Santamouris, M., Synnefa, A., Wong, N.H., Zinzi, M.,Local climate change and urban heat island mitigation techniques - The state of the art. J. Civ. Eng. Manage.2016 22 (1), 1–16. https://doi.org/10.3846/13923730.2015.1111934 DOI: https://doi.org/10.3846/13923730.2015.1111934
[52] Picari, V., Dervishi, S., (2019). Analysis of urban heat Island phenomenon and mitigation strategies for Tirana, Albania. Building Simulation Conference Proceedings, 2019 6, 3786. https://doi.org/10.26868/25222708.2019.211334 DOI: https://doi.org/10.26868/25222708.2019.211334
[53] Santamouris, M., Paolini, R., Haddad, S., Synnefa, A., Garshasbi, S., Hatvani-Kovacs, G., Gobakis, K., Yenneti, K., Vasilakopoulou, K., Feng, J., Gao, K., Papangelis, G., Dandou, A., Methymaki, G., Portalakis, P., Tombrou, M., Heat mitigation technologies can improve sustainability in cities. Energy Build. 2020 217, 110002. https://doi.org/10.1016/J.ENBUILD.2020.110002 DOI: https://doi.org/10.1016/j.enbuild.2020.110002
[54] Zhao, T.F., Fong, K.F., (2017). Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot-humid climate (Part II): Evaluation and characterization. Sustainable Cities Soc. 2017 35, 841. https://doi.org/10.1016/J.SCS.2017.05.006 DOI: https://doi.org/10.1016/j.scs.2017.05.006
[55] Kreutz, S., Dempsey, N., Lindholst, A.C., Resourcing place-keeping: Fighting for funding. In Place-Keeping: Open Space Management in Practice, 2014. https://doi.org/10.4324/9780203725313-15 DOI: https://doi.org/10.4324/9780203725313
[56] Gunawardena, K.R., Wells, M.J., Kershaw T., Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Env. 2017 584, 1040. https://doi.org/10.1016/j.scitotenv.2017.01.158 DOI: https://doi.org/10.1016/j.scitotenv.2017.01.158
[57] Zhou, W., Yu, W., Zhang, Z., Cao, W., Wu., T., How can urban green spaces be planned to mitigate urban heat island effect under different climatic backgrounds? A threshold-based perspective. Sci. of The Total Env. 2023 890, 164422. https://doi.org/10.1016/j.scitotenv.2023.164422 DOI: https://doi.org/10.1016/j.scitotenv.2023.164422
[58] Cady, T. J., Rahn, D. A., Brunsell, N. A., Lyles, W., Conversion of abandoned property to green space as a strategy to mitigate the urban heat island investigated with numerical simulations. J. Appl. Meteorol. Climatol. 2020, 59(11), 1827. https://doi.org/10.1175/JAMC-D-20-0093.1 DOI: https://doi.org/10.1175/JAMC-D-20-0093.1
[59] Syafii, N. I., Ichinose, M., Wong, N. H., Kumakura, E., Jusuf, S. K., Chigusa, K., Experimental Study on the Influence of Urban Water Body on Thermal Environment at Outdoor Scale Model. Procedia Eng. 2016, 169, 191. https://doi.org/10.1016/j.proeng.2016.10.023 DOI: https://doi.org/10.1016/j.proeng.2016.10.023
[60] Gherraz, H., Alkama, D., Quantifying the impact of green spaces and water bodies on urban climate and land surface temperature (Mila, Algeria) Rom. J. Geogr.2020 64(2), 155.
[61] Mauri, L., Battista, G., de Lieto Vollaro, E.,de Lieto Vollaro, R., Retroreflective materials for building’s façades: Experimental characterization and numerical simulations. Sol. Energy, 2018 171, 150. https://doi.org/10.1016/j.solener.2018.06.073 DOI: https://doi.org/10.1016/j.solener.2018.06.073
[62] Andrés-Anaya, P., Sánchez-Aparicio, M., del Pozo, S., Lagüela, S., Correlation of Land Surface Temperature with IR Albedo for the Analysis of Urban Heat Island Eng. Proc. 2021 8(1). https://doi.org/10.3390/engproc2021008009 DOI: https://doi.org/10.3390/engproc2021008009
[63] Tahooni, A., Kakroodi, A.A., Kiavarz, M., Monitoring of land surface albedo and its impact on land surface temperature (LST) using time series of remote sensing data, Ecol. Inf. 2023 75, 102118. https://doi.org/10.1016/j.ecoinf.2023.102118 DOI: https://doi.org/10.1016/j.ecoinf.2023.102118
[64] Kong, J., Zhao, Y., Strebel, D., Gao, K., Carmeliet, J., Lei, C., Understanding the impact of heatwave on urban heat in greater Sydney: Temporal surface energy budget change with land types. Sci. Total Env. 2023 903, 166374. https://doi.org/10.1016/J.SCITOTENV.2023.166374 DOI: https://doi.org/10.1016/j.scitotenv.2023.166374
[65] Shittu, E., Stojceska, V., Gratton, P., Kolokotroni, M., Environmental impact of cool roof paint: case-study of house retrofit in two hot islands. Energy Build. 2020 217, 110007. https://doi.org/10.1016/J.ENBUILD.2020.110007 DOI: https://doi.org/10.1016/j.enbuild.2020.110007
[66] Kousis, I., Pisello, A.L., Evaluating the performance of cool pavements for urban heat island mitigation under realistic conditions: A systematic review and meta-analysis. Urban Clim. 2023 49.101470. https://doi.org/10.1016/J.UCLIM.2023.101470 DOI: https://doi.org/10.1016/j.uclim.2023.101470
[67] Kumar, D., Tewary, T., Investigating the sustainability of urban energy generation with techno-economic analysis from hybrid energy systems. Energy Strategy Rev. 2023 50, 101250. https://doi.org/10.1016/J.ESR.2023.101250 DOI: https://doi.org/10.1016/j.esr.2023.101250
[68] Radhi, H., Sharples, S., Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions. Appl. Energy,2013 112, 371. https://doi.org/10.1016/J.APENERGY.2013.06.013 DOI: https://doi.org/10.1016/j.apenergy.2013.06.013
[69] Liang, H., Meng, Q., Qi, Q., Ren, P., Spatiotemporal interaction between urban heat island and urban-construction indicators on the block scale in autumn in a humid and hot climate. Sustainable Cities Soc. 2022 78, 103638. https://doi.org/10.1016/J.SCS.2021.103638 DOI: https://doi.org/10.1016/j.scs.2021.103638
[70] Zheng, Z., Xie, S., Dai, H.N., Chen, X., Wang, H., Blockchain challenges and opportunities: a survey, Int. J. Web Grid Serv. 2018 14(4), 352. http://doi.org/10.1504/ijwgs.2018.095647 DOI: https://doi.org/10.1504/IJWGS.2018.095647
[71] Strulak-Wójcikiewicz, R., Deja, A.,A concept for an IT platform to assess the impact of transport infrastructure investments on ecological safety and security. Procedia Comput. Sci. 2022 207, 4258. https://doi.org/10.1016/J.PROCS.2022.09.489 DOI: https://doi.org/10.1016/j.procs.2022.09.489
[72] Zhong, J., Li, Z., Zhang, D., Yang, J., Zhu, J., An evaluation framework for urban ecological compensation priority in China based on meta-analysis and fuzzy comprehensive evaluation. Ecol. Indic. 2024 158, 111284. https://doi.org/10.1016/J.ECOLIND.2023.111284 DOI: https://doi.org/10.1016/j.ecolind.2023.111284
[73] Batty, M., Axhausen, K. W Giannotti, F. Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., Portugali, Y., Smart cities of the future, Eur. Phys. J. Spec. Top. 2012 214(1), 481. http://doi.org/10.1140/epjst/e2012-01703-3 DOI: https://doi.org/10.1140/epjst/e2012-01703-3
[74] Lampropoulos, G., Siakas, K., Viana, J., Reinhold, O., Artificial intelligence, blockchain, big data analytics, machine learning and data mining in traditional CRM and Social CRM: a critical review, The 21st IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) 2022 504-510. http://doi.org/10.1109/WI-IAT55865.2022.00080 DOI: https://doi.org/10.1109/WI-IAT55865.2022.00080
[75] Parmentola, A., Petrillo, A., Tutore, I., De Felice, F., Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the perspective of Sustainable Development Goals (SDGs), Bus. Strat. Environ. 2022 31(1) 194-217. http://doi.org/10.1002/bse.2882 DOI: https://doi.org/10.1002/bse.2882
[76] Kramers, A., Höjer, M., Lövehagen, N., Wangel, J., Smart sustainable cities – exploring ICT solutions for reduced energy use in cities, Environ. Model. Software, 2014 56, 52-62. http://doi.org/10.1016/j.envsoft.2013.12.019 DOI: https://doi.org/10.1016/j.envsoft.2013.12.019
[77] Zheng, Y., Optimization of computer programming based on mathematical models of artificial intelligence algorithms. Comput. Electr. Eng. 2023 110, 108834. https://doi.org/10.1016/J.COMPELECENG.2023.108834 DOI: https://doi.org/10.1016/j.compeleceng.2023.108834
[78] Shaamala, A., Yigitcanlar, T., Nili, A., Nyandega, D., Algorithmic green infrastructure optimisation: Review of artificial intelligence driven approaches for tackling climate change. Sustainable Cities Soc. 2024, 101, 105182. https://doi.org/10.1016/J.SCS.2024.105182 DOI: https://doi.org/10.1016/j.scs.2024.105182
[79] Wang, Y., Li, Y., Application of Artificial Intelligence Algorithm in Indoor Virtual Display System. Procedia Comput. Sci. 2023 228, 1294. https://doi.org/10.1016/J.PROCS.2023.11.069 DOI: https://doi.org/10.1016/j.procs.2023.11.069
[80] Shamsipour, A., Jahanshahi, S., Mousavi, S.S., Shoja, F., Ansari Golenji, R., Tayebi, S., Alavi, S.A., Sharifi, A., (2024). Assessing and mapping urban ecological resilience using the loss-gain approach: A case study of Tehran, Iran. Sustainable Cities Soc. 2024 103, 105252. https://doi.org/10.1016/J.SCS.2024.105252 DOI: https://doi.org/10.1016/j.scs.2024.105252
[81] Shuai, N., Hu, Y., Chen, J., Liu, X., Bai, Y., Does ecological network affect the construction land spatial development intensity? An empirical study based on the main urban area of Jinan, China. Eco. Inf. 2024 81, 102609. https://doi.org/10.1016/J.ECOINF.2024.102609 DOI: https://doi.org/10.1016/j.ecoinf.2024.102609
[82] Wang, L., Yuan, M., Li, H., Chen, X., Exploring the coupling coordination of urban ecological resilience and new-type urbanization: The case of China’s Chengdu–Chongqing Economic Circle. Environ. Technol. Innovation 2023 32, 103372. https://doi.org/10.1016/J.ETI.2023.103372 DOI: https://doi.org/10.1016/j.eti.2023.103372
[83] Wang, Z., Lin, L., Zhang, B., Xu, H., Xue, J., Fu, Y., Zeng, Y., Li, F., Sustainable urban development based on an adaptive cycle model: A coupled social and ecological land use development model. Ecol. Indic. 2023 154, 110666. https://doi.org/10.1016/J.ECOLIND.2023.110666 DOI: https://doi.org/10.1016/j.ecolind.2023.110666
[84] Zhao, Y., He, L., Bai, W., He, Z., Luo, F., Wang, Z., Prediction of ecological security patterns based on urban expansion: A case study of Chengdu. Ecol. Indic. 2024 158, 111467. https://doi.org/10.1016/J.ECOLIND.2023.111467 DOI: https://doi.org/10.1016/j.ecolind.2023.111467
[85] Alqadhi, S., Bindajam, A. A., Mallick, J., Talukdar, S., Rahman, A., Applying deep learning to manage urban ecosystems in arid Abha, Saudi Arabia: Remote sensing-based modelling for ecological condition assessment and decision-making. J. Heliyon, 202410(4), e25731. https://doi.org/10.1016/J.HELIYON.2024.E25731 DOI: https://doi.org/10.1016/j.heliyon.2024.e25731
[86] Xu, C., Huo, X., Hong, Y., Yu, C., de Jong, M., Cheng, B., How urban greening policy affects urban ecological resilience: Quasi-natural experimental evidence from three megacity clusters in China. J. Cleaner Prod. 2024 452, 142233. https://doi.org/10.1016/J.JCLEPRO.2024.142233 DOI: https://doi.org/10.1016/j.jclepro.2024.142233
[87] Wang, J., Li, C., Yao, Z., Cui, S., Soundscape for urban ecological security evaluation. Basic and Appl. Ecol. 2024 76, 50–57. https://doi.org/10.1016/J.BAAE.2024.02.007 DOI: https://doi.org/10.1016/j.baae.2024.02.007
[88] Zhang, W., Wen, L., Research on the analysis of the coupling coordination degree of Shaanxi’s atmospheric ecological governance and urban clean governance based on environmental sustainability. Ecol. Indic. 2023 155, 111068. https://doi.org/10.1016/J.ECOLIND.2023.111068 DOI: https://doi.org/10.1016/j.ecolind.2023.111068
[89] Zhou, M., Wang, F., The driving factors of recreational utilization of ecological space in urban agglomerations: The perspective of urban political ecology. Ecol. Indic. 2024 158, 111409. https://doi.org/10.1016/J.ECOLIND.2023.111409 DOI: https://doi.org/10.1016/j.ecolind.2023.111409
[90] Hussain, M.M., Pal, S., Villanthenkodath, M.A., Towards sustainable development: The impact of transport infrastructure expenditure on the ecological footprint in India. Innovation Green Dev. 2023 2(2), 100037. https://doi.org/10.1016/J.IGD.2023.100037 DOI: https://doi.org/10.1016/j.igd.2023.100037
[91] Satrovic, E., Cetindas, A., Akben, I., Damrah, S., Do natural resource dependence, economic growth and transport energy consumption accelerate ecological footprint in the most innovative countries? The moderating role of technological innovation. Gondwana Res. 2024 127, 116. https://doi.org/10.1016/J.GR.2023.04.008 DOI: https://doi.org/10.1016/j.gr.2023.04.008
[92] Gao, B., Zhang, N., Chen, C., Comprehensive evaluation of urban talent ecological environment and diagnosis of barrier factors: An analysis of 16 cities in Shandong Province. Expert Syst. Appl. 2024246, 123157. https://doi.org/10.1016/J.ESWA.2024.123157 DOI: https://doi.org/10.1016/j.eswa.2024.123157
[93] Huang, L., Lu, Y., Wang, J., Linking G2SFCA method and circuit theory to promote spatial equity and landscape connectivity in urban ecological infrastructure. J. Environ. Manage. 2023 348, 119208. https://doi.org/10.1016/J.JENVMAN.2023.119208 DOI: https://doi.org/10.1016/j.jenvman.2023.119208
[94] Wu, X., Huang, X., Research on the geometric weighting-coupling degree method for the urban ecological environment vulnerability index. Ecol. Indic. 2024 162, 112023. https://doi.org/10.1016/J.ECOLIND.2024.112023 DOI: https://doi.org/10.1016/j.ecolind.2024.112023
[95] Herath, H.M.K.K.M.B., Mittal, M., Adoption of artificial intelligence in smart cities: A comprehensive review.Int. J. Inf. Manage. Data Insights, 2022, 2(1), 100076. https://doi.org/10.1016/J.JJIMEI.2022.100076 DOI: https://doi.org/10.1016/j.jjimei.2022.100076
[96] Höjer, M., Wangel, J., Smart sustainable cities: definition and challenges. ICT innovations for sustainability, Adv. Intell. Syst. Comput. 2015 333-349. https://doi.org/10.1007/978-3-319-09228-7_20 DOI: https://doi.org/10.1007/978-3-319-09228-7_20
[97] Pomykała, A., Adapting cities for climate change: concept of multi-city knowledge transfer in the field of decarbonizing buildings. Space & Form 2024, 57 221. http://doi.org/10.21005/pif.2024.57.C-04 DOI: https://doi.org/10.21005/pif.2024.57.C-04
Article Details
Abstract views: 43
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.