Influence of urban changes on the efficiency of ventilation paths
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
The constantly progressing urbanisation of urban areas causes a shortage of land intended for residential development. Open corridor spaces, which often reach the central zones of cities, are becoming very attractive to development companies. At the same time, the still insufficient degree of coverage of cities with local plans contributes to the weakened protection of these areas against investment pressure. Hence the question arises – do the areas of potential corridors designated in planning documents still play such a role? The aim of the work is to determine the impact of changes in spatial development on the effectiveness of the functioning of the western part of the ventilation corridor, running along the Łódka River valley in Łódź (Poland). This area can be considered key from the point of view of shaping aerodynamic conditions, and thus thermal conditions, in the city. The assessment of the corridor's effectiveness was carried out using two methods: a visual estimation method, using data from Corine Land Cover, and a morphometric method based on data provided by the Łódź Geodesy Centre. Aerodynamic roughness length parameters were determined for 1990 and 2018, and then compared with the adopted criteria characterising ventilation corridors. The final part compares the results obtained using the adopted methods and determines the impact of changes on air flow and the efficiency of the ventilation corridor.
Keywords:
References
[1] Yang X., et al., “Impact of urban heat island on energy demand in buildings: local climate zones in Nanjing”, Applied Energy, vol. 260, (2020), 1-13. https://doi.org/10.1016/j.apenergy.2019.114279 DOI: https://doi.org/10.1016/j.apenergy.2019.114279
[2] Adger W. N., et al., “Urbanization, migration, and adaptation to climate change”, One Earth, vol. 3, (2020), 396-399. https://doi.org/10.1016/j.oneear.2020.09.016 DOI: https://doi.org/10.1016/j.oneear.2020.09.016
[3] Lee J.-Y. et al., “Future global climate: scenario-based projections and near term information”, [in:] Masson-Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M. I., Huang M., Leitzell K., Lonnoy E., Matthews J. B. R., Maycock T. K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, in Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2023, 553-672. https://doi.org/10.1017/9781009157896.006 DOI: https://doi.org/10.1017/9781009157896.006
[4] Pison G., “World population: 8 billion today, how many tomorrow?”, Population & Societies, vol. 604, (2022), 1-5. https://doi.org/10.3917/popsoc.604.0001 DOI: https://doi.org/10.3917/popsoc.604.0001
[5] Deuster C. et al., Demography and Climate Change, Publications Office of the European Union, Luxembourg, Luxembourg, 2023. https://dx.doi.org/10.2760/26411
[6] Luo F., Yang Y., Zong L., Bi X., “The interactions between urban heat island and heat waves amplify urban warming in Guangzhou, China: roles of urban ventilation and local climate zones”, Frontiers in Environmental Science, vol. 11(1084473), (2023), 1-13. https://doi.org/10.3389/fenvs.2023.1084473 DOI: https://doi.org/10.3389/fenvs.2023.1084473
[7] Błażejczyk K. et al., Miejska wyspa ciepła w Warszawie, Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk, Wydawnictwo Akademickie SEDNO, Warszawa, Polska, 2014.
[8] Elkhazindar A., Kharrufa S. N., Arar M. S., “The effect of urban form on the Heat Island Phenomenon and Human Thermal Comfort: a comparative study of UAE residential sites”, Energies, vol. 15(5471), (2022), 1-31. https://doi.org/10.3390/en15155471 DOI: https://doi.org/10.3390/en15155471
[9] Vuuren D. P. et al., “The representative concentration pathways: an overview”, Climatic Change, vol. 109, (2011), 5-31. https://doi.org/10.1007/s10584-011-0148-z DOI: https://doi.org/10.1007/s10584-011-0148-z
[10] Lopez-Cabeza V. P., Alzate-Gaviria S., Diz-Mellado E., Rivera-Gomez C., Galan-Marin C., “Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions”, Sustainable Cities and Society, vol. 81(103872), (2022), 1-19. https://doi.org/10.1016/j.scs.2022.103872 DOI: https://doi.org/10.1016/j.scs.2022.103872
[11] Ampatzidis P., Kershaw T., “A review of the impact of blue space on the urban microclimate”, Science of The Total Environment, vol. 750(139068), (2020), 1-18. https://doi.org/10.1016/j.scitotenv.2020.139068 DOI: https://doi.org/10.1016/j.scitotenv.2020.139068
[12] Yang X., Zhao L., Bruse M., Meng Q., “Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces”, Building and Environment, vol. 60, (2013), 93-104. https://doi.org/10.1016/j.buildenv.2012.11.008 DOI: https://doi.org/10.1016/j.buildenv.2012.11.008
[13] Salata F., Golasi I., De Lieto Vollaro A., De Lieto Vollaro R., “How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study”, Energy and Buildings, vol. 99, (2015), 32-49. https://doi.org/10.1016/j.enbuild.2015.04.010 DOI: https://doi.org/10.1016/j.enbuild.2015.04.010
[14] Fortuniak K., Miejska wyspa ciepła, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, Polska, 2003 (in polish).
[15] Huang J., Wang Y., “Identification of ventilation corridors through a simulation scenario of forest canopy density in the metropolitan area”, Sustainable Cities and Society, vol. 95, (2023), 1-15. https://doi.org/10.1016/j.scs.2023.104595 DOI: https://doi.org/10.1016/j.scs.2023.104595
[16] Luo Y. et al., “Seasonal cooling effect of vegetation and albedo applied to the LCZ Classification of Three Chinese Megacities”, Remote Sensing, vol. 15(23), (2023), 1-25. https://doi.org/10.3390/rs15235478 DOI: https://doi.org/10.3390/rs15235478
[17] Hu J. et al., “Analysis of the spatial and temporal variations of land surface temperature based on local climate zones: a case study in Nanjing, China”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12(11), (2019), 4213-4223. https://doi.org/10.1109/JSTARS.2019.2926502 DOI: https://doi.org/10.1109/JSTARS.2019.2926502
[18] Sandeepan B. S., Rakesh P. T., Venkatesan R., “Numerical simulation of observed submesoscale plume meandering under nocturnal drainage flow”, Atmospheric Environment, vol. 69, (2013), 29-36. https://doi.org/10.1016/j.atmosenv.2012.12.007 DOI: https://doi.org/10.1016/j.atmosenv.2012.12.007
[19] Son J. M., Eum J. H., Kim S., “Wind corridor planning and management strategies using cold air characteristics: The application in Korean cities”, Sustainable Cities and Society, vol. 77(103512), (2022), 1-16. https://doi.org/10.1016/j.scs.2021.103512 DOI: https://doi.org/10.1016/j.scs.2021.103512
[20] Ge Q., Kong Q., Xi J., Zheng J., “Application of UTCI in China from tourism perspective”, Theoretical and Applied Climatology, vol. 128(3), (2017), 551-561. https://doi.org/10.1007/s00704-016-1731-z DOI: https://doi.org/10.1007/s00704-016-1731-z
[21] Patz J. A., Campbell-Lendrum D., Holloway T., Foley J. A., “Impact of regional climate change on human health”, Nature, vol. 438(7066), (2005), 310-317. https://doi.org/10.1038/nature04188 DOI: https://doi.org/10.1038/nature04188
[22] Kim J., “Exploring green infrastructure benefits at house and neighborhood scale: case study of Illinois, USA”, Landscape and Ecological Engineering, vol. 14, (2018), 165-174. https://doi.org/10.1007/s11355-017-0331-0 DOI: https://doi.org/10.1007/s11355-017-0331-0
[23] Guo A. et al., “Quantifying the impact of urban ventilation corridors on thermal environment in Chinese megacities”, Ecological Indicators, vol. 156(111072), (2023), 1-14. https://doi.org/10.1016/j.ecolind.2023.111072 DOI: https://doi.org/10.1016/j.ecolind.2023.111072
[24] Ren C. et al., “Creating breathing cities by adopting urban ventilation assessment and wind corridor plan – The implementation in Chinese cities”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 182, (2018), 170-188. https://doi.org/10.1016/j.jweia.2018.09.023 DOI: https://doi.org/10.1016/j.jweia.2018.09.023
[25] Yim S. H. L., Fung J. C. H., Ng E. Y. Y., “An assessment indicator for air ventilation and pollutant dispersion potential in an urban canopy with complex natural terrain and significant wind variations”, Atmospheric Environment, vol. 94, (2014)¸ 297-306. https://doi.org/10.1016/j.atmosenv.2014.05.044 DOI: https://doi.org/10.1016/j.atmosenv.2014.05.044
[26] Schwaab J. et al., “The role of urban trees in reducing land surface temperatures in European cities”, Nature Communications, vol. 12(1), (2021), 1-11. https://doi.org/10.1038/s41467-021-26768-w DOI: https://doi.org/10.1038/s41467-021-26768-w
[27] Jayasinghe C. B., Withanage N. C., Mishra P. K., Abdelrahman K., Fnais M. S., “Evaluating urban heat islands dynamics and environmental criticality in a growing city of a tropical country using remote sensing indices: the example of Matara City, Sri Lanka”, Sustainability, vol. 16(10635), (2024), 1-30. https://doi.org/10.3390/su162310635 DOI: https://doi.org/10.3390/su162310635
[28] Liu W., Zhang G., Jiang Y., Wang J., “Effective range and driving factors of the urban ventilation corridor effect on urban thermal comfort at unified scale with multisource data”, Remote Sensing, vol. 13(9), (2021), 1-18. https://doi.org/10.3390/rs13091783 DOI: https://doi.org/10.3390/rs13091783
[29] Ng E., Yuan C., Chen L., Ren C., Fung J. C. H., “Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong”, Landscape and Urban Planning, vol. 101(1), (2011), 59-74. https://doi.org/10.1016/j.landurbplan.2011.01.004 DOI: https://doi.org/10.1016/j.landurbplan.2011.01.004
[30] Xie P., Yang J., Wang H., Liu Y., Liu Y., “A New method of simulating urban ventilation corridors using circuit theory”, Sustainable Cities and Society, vol. 59(102162), (2020), 1-10. https://doi.org/10.1016/j.scs.2020.102162 DOI: https://doi.org/10.1016/j.scs.2020.102162
[31] Klein P., Fedorovich E., Rotach M., “A wind tunnel study of organised and turbulent air motions in urban street canyons”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 89, (2001), 849-861. https://doi.org/10.1016/S0167-6105(01)00074-5 DOI: https://doi.org/10.1016/S0167-6105(01)00074-5
[32] Kubota T., Miura M., Tominaga Y., Mochida A. “Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods”, Building and Environment, vol. 43(10), (2008), 1699-1708. https://doi.org/10.1016/j.buildenv.2007.10.015 DOI: https://doi.org/10.1016/j.buildenv.2007.10.015
[33] Yoshie R. et al., “Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 95(9), (2007), 1551-1578. https://doi.org/10.1016/j. jweia.2007.02.023 DOI: https://doi.org/10.1016/j.jweia.2007.02.023
[34] Unal Cilek M., Cilek A., “Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data”, Sustainable Cities and Society, vol. 69(102877), (2021), 1-18. https://doi.org/10.1016/j. scs.2021.102877 DOI: https://doi.org/10.1016/j.scs.2021.102877
[35] Gautam K. R., Rong L., Zhang G., Abkar M., “Comparison of analysis methods for wind-driven cross ventilation through large openings”, Building and Environment, vol. 154, (2019), 375-388. https://doi.org/10.1016/j.buildenv.2019.02.009 DOI: https://doi.org/10.1016/j.buildenv.2019.02.009
[36] Ferreira C. S. S., Walsh R. P. D., Ferreira A. J. D., “Degradation in urban areas”, Current Opinion in Environmental Science & Health, vol. 5, (2018), 19-25. https://doi.org/10.1016/j.coesh.2018.04.001 DOI: https://doi.org/10.1016/j.coesh.2018.04.001
[37] Laskowski L., Wybrane zagadnienia fizyki miasta, Centralny Ośrodek Informacji Budownictwa, Warszawa, Polska, 1987 (in polish).
[38] Wong M. S., Nichol J. E., To P. H., Wang J., “A simple method for designation of urban ventilation corridors and its application to urban heat island analysis”, Building and Environment, vol. 45, (2010), 1880-1889. https://doi.org/10.1016/j.buildenv.2010.02.019 DOI: https://doi.org/10.1016/j.buildenv.2010.02.019
[39] Yin J., Zhan Q., Tayyab M., “The ventilation path assessment of urban street in Wuhan”, Polish Journal of Environmental Studies, vol. 30(3), (2021), 2877-2889. DOI: https://doi.org/10.15244/pjoes/130518 DOI: https://doi.org/10.15244/pjoes/130518
[40] Kraków City Council, Resolution No. CXII/1700/14 of the Kraków City Council of 9 July 2014 on the adoption of the amendment to the Study of Conditions and Directions of Spatial Development of the City of Kraków, Kraków, Poland, 2014.
[41] Łódź City Council, Resolution No. LXIX/1753/18 of the Łódź City Council of 28 March 2018 on the adoption of the Study of Conditions and Directions of Spatial Development of the City of Łódź, Łódź, Poland, 2018.
[42] Peng L. et al., “Wind weakening in a dense high-rise city due to over nearly five decades of urbanization”, Building and Environment, vol. 138, (2018), 207-220. https://doi.org/10.1016/j. buildenv.2018.04.037 DOI: https://doi.org/10.1016/j.buildenv.2018.04.037
[43] Wysmyk-Lamprecht B., Stobińska A., Jach K., Miłosz M., Opracowanie ekofizjograficzne sporządzone na potrzeby studium uwarunkowań i kierunków zagospodarowania przestrzennego, Łódź, Polska, 2007.
[44] Pan P. et al., “Identification of urban ventilation corridor system using meteorology and GIS technology: a case study in Zhengzhou, China”, Atmosphere, vol. 15(1034), (2024), 1-19. https://doi.org/10.3390/atmos15091034 DOI: https://doi.org/10.3390/atmos15091034
[45] Cichowicz R., Dobrzański M., “Analysis of Air Pollution around a CHP Plant: Real Measurements vs. Computer Simulations”, Energies, vol. 15(553), (2022), 1-18. https://doi.org/10.3390/en15020553 DOI: https://doi.org/10.3390/en15020553
[46] Wicht M., Osińska-Skotak K., “Temporal analysis of urban changes and development in Warsaw’s ventilation corridors”, Miscellanea Geographica – Regional Studies on Development, vol. 20(4), (2016), 11-21. https://doi.org/10.1515/mgrsd-2016-0021 DOI: https://doi.org/10.1515/mgrsd-2016-0021
[47] City of Warsaw Office, Ecophysiographic study for the study of conditions and directions of spatial development of the capital city of Warsaw, Warsaw, Poland, 2006.
[48] Ng Y. Y., Tam I., Jiang J., Ng K. C. S., Coles J., “Urban climatic map and standards for wind environment - feasibility study. executive summary”, School of Architecture CUHK, Hongkong, China, 2008.
[49] Matzarakis A., Mayer H., “Mapping of urban air paths for planning in Munchen”, Planning Applications of Urban and Building Climatology, vol. 16, (1992), 13-22.
[50] Ustawa z dnia 16 kwietnia 2004 r. o ochronie przyrody (Dz. U. 2004, nr 92, poz. 880).
[51] Han L., Zhao J., Zhang T., Zhang J., “Urban ventilation corridors exacerbate air pollution in central urban areas: Evidence from a Chinese city”, Sustainable Cities and Society, 87(104129), (2022), 1-10. https://doi.org/10.1016/j.scs.2022.104129 DOI: https://doi.org/10.1016/j.scs.2022.104129
[52] Osińska-Skotak K., Zawalich J., “Analysis of land use changes of urban ventilation corridors in Warsaw in 1992-2015”, Geographia Polonica, vol. 89(3), (2016), 345-358. https://doi.org/GPol.0057 DOI: https://doi.org/10.7163/GPol.0057
[53] Gu K., Fang Y., Qian Z., Sun Z., Wang A., “Spatial planning for urban ventilation corridors by urban climatology”, Ecosystem Health and Sustainability, vol. 6(1), (2020), 1-13. https://doi.org/10.1080/20964129.2020.1747946 DOI: https://doi.org/10.1080/20964129.2020.1747946
[54] Fortuniak K., Wibig J., Atlas miasta Łodzi, Plansza X: Klimat, Łódź, Polska, 2002.
[55] Stefański K., Narodziny miasta: rozwój przestrzenny i architektura Łodzi po 1914 roku, Wydawnictwo Jacek Kusiński, Łódź, Polska, 2016.
[56] Zielonko-Jung K., Kształtowanie przestrzenne architektury ekologicznej w strukturze miasta, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, Polska, 2013.
[57] Grimmond C. S. B., Oke T. R., “Aerodynamic properties of urban areas derived from analysis of surface form”, Journal of Applied Meteorology, vol. 38, (1999), 1262-1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
[58] Grimmond C. S. B., Oke T. R., “Heat storage in urban areas: local scale observations and evaluation of a simple model”, Journal of Applied Meteorology, vol. 38, (1999), 922-940. https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2
[59] Bottema M., Mestayer P. G., “Urban roughness mapping – validation techniques and some first results”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 74-76, (1998), 163-173. https://doi.org/10.1016/S0167-6105(98)00014-2 DOI: https://doi.org/10.1016/S0167-6105(98)00014-2
[60] Lewińska J., Klimat obszarów zurbanizowanych, Instytut Gospodarki Przestrzennej i Komunalnej, Warszawa, Polska, 1990 (in polish).
[61] Bochenek A., Klemm K., “Wyznaczanie korytarzy przewietrzających przy użyciu metody morfometrycznej dla wybranego fragmentu miasta Łodzi”, Czasopismo Budownictwo i Architektura, vol. 15(4), (2016), 139-151. https://doi.org/10.24358/Bud-Arch_16_154_14 DOI: https://doi.org/10.24358/Bud-Arch_16_154_14
[62] Wieringa J., Davenport A. G., Grimond C. S. B., Oke T. R., “The revised Davenport roughness classification for cities and sheltered country”, Proceedings of the 3rd European and African Conference on Wind Engineering, Eindhoven, the Netherlands, 2000.
[63] Klemm K., Kompleksowa ocena warunków mikroklimatu w luźnych i zwartych strukturach urbanistycznych, Polska Akademia Nauk, Warszawa, Polska, 2011 (in polish).
[64] Bossard M., CORINE land cover technical guide - Addendum 2000, European Environment Agency, Denmark, Copenhagen, 2000.
[65] Silva J., Ribeiro C., Guedes R., Roughness length classification of Corine land cover classes, 2007.
[66] Suder A., Szymanowski M., “Determination of ventilation channels in urban areas: a case study of Wrocław (Poland)”, Pure and Applied Geophysics, vol. 171, (2014), 965-975. https://doi.org/10.1007/s00024-013-0659-9 DOI: https://doi.org/10.1007/s00024-013-0659-9
[67] Gal T., Unger J., “Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area”, Building and Environment, vol. 44, (2009), 198-206. https://doi.org/10.1016/j.buildenv.2008.02.008 DOI: https://doi.org/10.1016/j.buildenv.2008.02.008
Article Details
Abstract views: 38
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.