HARDWARE AND SOFTWARE MEANS FOR ELECTRONIC COMPONENTS AND SENSORS RESEARCH
Gryhoriy Barylo
gbarylo@polynet.lviv.uaLviv Polytechnic National University, Department of Electronics Devices (Ukraine)
http://orcid.org/0000-0001-5749-9242
Oksana Boyko
Danylo Halytsky Lviv National Medical University, Department of Medical Informatics (Ukraine)
http://orcid.org/0000-0002-8810-8969
Ihor Gelzynskyy
Lviv Polytechnic National University, Department of Electronics Devices (Ukraine)
http://orcid.org/0000-0002-1931-6991
Roman Holyaka
1. Danylo Halytsky Lviv National Medical University, Department of Medical Informatics, 2. Lviv Polytechnic National University, Department of Electronics and Information Technology (Ukraine)
http://orcid.org/0000-0002-7720-0372
Zenon Hotra
Lviv Polytechnic National University, Department of Electronics Devices (Ukraine)
http://orcid.org/0000-0002-6566-6706
Tetyana Marusenkova
Lviv Polytechnic National University, Department of Software (Ukraine)
http://orcid.org/0000-0003-4508-5725
Mykola Khilchuk
Lviv Polytechnic National University, Department of Electronics and Information Technology (Ukraine)
http://orcid.org/0000-0001-8579-9234
Magdalena Michalska
Lublin University of Technology, Department of Electronics and Information Technology (Poland)
http://orcid.org/0000-0002-0874-3285
Abstract
The main results of RETwix development are presented in the paper. RETwix is an universal hardware and software means for laboratory research, which can be used for investigation both electronic components and arbitrary electrical, thermal, chemical or biochemical processes. Sensors, actuators and signal transducers of the Analog Front-End are used for this purpose. The RETwix means includes two CV-LAB devices (Capacitance & Voltage LABoratory) and UA-LAB (Universal Analog LABoratory). The peculiarities of construction and examples of RETwix using are described.
Keywords:
embedded system, electronic components, sensor, laboratory researchReferences
Akita I., Okazawa T., Kurui Y., Fujimoto A., Asano T.: A Feedforward Noise Reduction Technique in Capacitive MEMS Accelerometer Analog Front-End for Ultra-Low-Power IoT Applications. IEEE Journal of Solid-State Circuits 2019, 1–11, [http://doi.org/10.1109/JSSC.2019.2952837].
DOI: https://doi.org/10.1109/JSSC.2019.2952837
Google Scholar
Boyko O., Barylo G., Holyaka R., Hotra Z., Ilkanych K.: Development of signal converter of thermal sensors based on combination of thermal and capacity research methods. Eastern-European Journal of Enterprise Technologies, 4/9(94)/2018, 36–42, [http://doi.org/10.15587/1729-4061.2018.139763].
DOI: https://doi.org/10.15587/1729-4061.2018.139763
Google Scholar
Boyko O., Holyaka R. Hotra Z., Fechan A., Ivanyuk H., Chaban O., Zyska T., Shedreyeva I.: Functionally integrated sensors of thermal quantities based on optocoupler. Proc. of SPIE 10808/2018, 1080812, [http://doi.org/10.1117/12.2501632].
DOI: https://doi.org/10.1117/12.2501632
Google Scholar
Boyko O., Holyaka R., Hotra Z.: Functionally integrated sensors on magnetic and thermal methods combination basis. Proc. IEEE 14th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET’2018), 2018, 697–701.
DOI: https://doi.org/10.1109/TCSET.2018.8336296
Google Scholar
Deng Y., Lu D., Chung C. J., Huang D., Zeng Z.: Personalized Learning in a Virtual Hands-on Lab Platform for Computer Science Education. Proc. IEEE Frontiers in Education Conference (FIE), 2018, 1–8, [http://doi.org/10.1109/FIE.2018.8659291].
DOI: https://doi.org/10.1109/FIE.2018.8659291
Google Scholar
Diwakar A., Poojary S., Noronha S. B.: Virtual labs in engineering education: Implementation using free and open source resources. Proc. IEEE International Conference on Technology Enhanced Education (ICTEE), 2012, 1–4, [http://doi.org/10.1109/ICTEE.2012.6208670].
DOI: https://doi.org/10.1109/ICTEE.2012.6208670
Google Scholar
Hotra O.: Microprocessor temperature meter for dentistry investigation. Przegląd Elektrotechniczny 86/2010, 63–65.
Google Scholar
Hotra O., Boyko O., Zyska T.: Improvement of the operation rate of medical temperature measuring devices. Proc. of SPIE 9291/2014, 92910A, [http://doi.org/10.1117/12.2070167].
DOI: https://doi.org/10.1117/12.2070167
Google Scholar
Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przegląd Electrotechniczny 88(4A)/2012, 169–171.
Google Scholar
Hu H., Islam T., Kostyukova A., Ha S., Gupta S.: From Battery Enabled to Natural Harvesting: Enzymatic BioFuel Cell Assisted Integrated Analog Front-End in 130 nm CMOS for Long-Term Monitoring. IEEE Transactions on Circuits and Systems I: Regular Papers 66(2)/2019, 534–545, [http://doi.org/10.1109/TCSI.2018.2869343].
DOI: https://doi.org/10.1109/TCSI.2018.2869343
Google Scholar
Huang J., Li R., An J., Ntalasha D., Yang F., Li K.: Energy-Efficient Resource Utilization for Heterogeneous Embedded Computing Systems. IEEE Transactions on Computers 66(9)/2017, 1518–1531, [http://doi.org/10.1109/TC.2017. 2693186].
Google Scholar
Jo D., Kim G. J.: ARIoT: scalable augmented reality framework for interacting with Internet of Things appliances everywhere. IEEE Transactions on Consumer Electronics 62(3)/2016, 334–340, [http://doi.org/10.1109/TCE.2016.7613201].
DOI: https://doi.org/10.1109/TCE.2016.7613201
Google Scholar
Leisenberg M., Stepponat M.: Internet of Things Remote Labs: Experiences with Data Analysis Experiments for Students Education. Proc. IEEE Global Engineering Education Conference – EDUCON 2019, 22–27, [http://doi.org/10.1109/EDUCON.2019.8725070].
DOI: https://doi.org/10.1109/EDUCON.2019.8725070
Google Scholar
Moore S. I., Omidbeike M., Fleming A., Yong Y. K.: Capacitive Instrumentation and Sensor Fusion for High-Bandwidth Nanopositioning. IEEE Sensors Letters 3(8)/2019, 2475–1472.
DOI: https://doi.org/10.1109/LSENS.2019.2933065
Google Scholar
Perales M., Pedraza L., Moreno-Ger P.: Work-In-Progress: Improving Online Higher Education with Virtual and Remote Labs. Proc. IEEE Global Engineering Education Conference – EDUCON 2019, 1136–1139.
DOI: https://doi.org/10.1109/EDUCON.2019.8725272
Google Scholar
Pesquera A., Morales R., Pastor R., Ros S., Hernandez R., Sancristobal E., Castro M.: DotLAB: Integrating remote labs in dotLRN. Proc. IEEE Global Engineering Education Conference – EDUCON 2011, 111–117, [http://doi.org/10.1109/EDUCON.2011.5773123].
DOI: https://doi.org/10.1109/EDUCON.2011.5773123
Google Scholar
Serra H., Bastos I., de Melo J. L., Oliveira J. P., Paulino, N., Nefzaoui E., Bourouina T.: A 0.9-V Analog-to-Digital Acquisition Channel for an IoT Water Management Sensor Node. IEEE Transactions on Circuits and Systems II: Express Briefs 66(10)/2019, 1678–1682, [http://doi.org/10.1109/TCSII.2019.2933276].
DOI: https://doi.org/10.1109/TCSII.2019.2933276
Google Scholar
Shambhavi B. R., Babu K. M., Vijaykumar A.: Enhanced e-Learning with Quality Enhancement in Engineering Education (QEEE) Program. Proc. 5th IEEE International Conference on MOOCs, Innovation and Technology in Education (MITE) 2017, 67–71, [http://doi.org/10.1109/MITE.2017.00018].
DOI: https://doi.org/10.1109/MITE.2017.00018
Google Scholar
Yang Y. C., Yang J.: Low-power low-noise inductorless front-end for IoT applications. Proc. 6th International Symposium on Next Generation Electronics (ISNE) 2017, [http://doi.org/10.1109/ISNE.2017.7968711].
DOI: https://doi.org/10.1109/ISNE.2017.7968711
Google Scholar
Authors
Gryhoriy Barylogbarylo@polynet.lviv.ua
Lviv Polytechnic National University, Department of Electronics Devices Ukraine
http://orcid.org/0000-0001-5749-9242
Authors
Oksana BoykoDanylo Halytsky Lviv National Medical University, Department of Medical Informatics Ukraine
http://orcid.org/0000-0002-8810-8969
Authors
Ihor GelzynskyyLviv Polytechnic National University, Department of Electronics Devices Ukraine
http://orcid.org/0000-0002-1931-6991
Authors
Roman Holyaka1. Danylo Halytsky Lviv National Medical University, Department of Medical Informatics, 2. Lviv Polytechnic National University, Department of Electronics and Information Technology Ukraine
http://orcid.org/0000-0002-7720-0372
Authors
Zenon HotraLviv Polytechnic National University, Department of Electronics Devices Ukraine
http://orcid.org/0000-0002-6566-6706
Authors
Tetyana MarusenkovaLviv Polytechnic National University, Department of Software Ukraine
http://orcid.org/0000-0003-4508-5725
Authors
Mykola KhilchukLviv Polytechnic National University, Department of Electronics and Information Technology Ukraine
http://orcid.org/0000-0001-8579-9234
Authors
Magdalena MichalskaLublin University of Technology, Department of Electronics and Information Technology Poland
http://orcid.org/0000-0002-0874-3285
Statistics
Abstract views: 476PDF downloads: 277
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Róża Dzierżak, Magdalena Michalska, ANALYSIS OF THE EFFECTIVENESS OF SELECTED SEGMENTATION METHODS OF ANATOMICAL BRAIN STRUCTURES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 2 (2018)
- Magdalena Michalska, MULTICLASS SKIN LESS IONS CLASSIFICATION BASED ON DEEP NEURAL NETWORKS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Yuriy Bobalo, Zenon Hotra, Olexandr Hres, Ruslan Politans’kyy, HARDWARE AND SOFTWARE REALIZATION OF THE TRANSMISSION OF AUDIO INFORMATION ENCRYPTED BY CHAOTIC SEQUENCES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 4 No. 4 (2014)
- Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Pylyp Skoropad, Alla Ivanyshyn, Olena Basalkevych, ROOT SURFACE TEMPERATURE MEASUREMENT DURING ROOT CANAL OBTURATION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)