INFORMATION SYSTEM FOR DETECTION OF PARAMETERS OF DANGEROUS INDUSTRIAL FACILITIES BASED ON GEOINFORMATION TECHNOLOGIES

Oleg Barabash

bar64@ukr.net
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» (Ukraine)
https://orcid.org/0000-0003-1715-0761

Olha Svynchuk


National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» (Ukraine)
https://orcid.org/0000-0001-9032-6335

Olena Bandurka


National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» (Ukraine)
https://orcid.org/0009-0007-2217-7834

Oleh Ilin


State University of Information and Communication Technologies (Ukraine)

Abstract

With the development of industry, the issue of environmental safety of countries worldwide has become increasingly acute. Currently, there is a deficiency of information systems capable of effectively and comprehensively informing the public about the state of the environment, analyzing the dynamics of environmental indicators, and assessing regional disparities in terms of environmental safety. The objective of this study is to develop an information system for monitoring the environmental condition of a country's territory based on geoinformation technologies, considering emissions of pollutants. This system is conceived as a multi-regional monitoring system focused on industrial areas. It incorporates a geo-module for user location determination and data representation tailored to the user's location. Additionally, the system regularly updates information on hazardous enterprises and notifies the population in case of emergencies.


Keywords:

information system, geoinformation technologies, software architecture, cluster analysis, functional stability

[1] Arsirii O. O., Ivanov O. V., Smyk S. Yu.: Risk zones from the filling stations modelling with application of geoinformation technology. Herald of Advanced Information Technology 4(1), 2021, 84–95 [https://doi.org/10.15276/hait.01.2021.8].
DOI: https://doi.org/10.15276/hait.01.2021.8   Google Scholar

[2] Barabash O. et al.: Method of identification of tree species composition of forests on the basis of geographic information database. Advanced Information Systems 6(4), 2022, 5–10 [https://doi.org/10.20998/2522-9052.2022.4.01].
DOI: https://doi.org/10.20998/2522-9052.2022.4.01   Google Scholar

[3] Barabash O. et al.: The assessment of the quality of functional stability of the automated control system with hierarchic structure. IEEE 2nd International Conference on System Analysis & Intelligent Computing. Conference Proceedings. 05-09 October, 2020, Kyiv, Ukraine, 158–161.
  Google Scholar

[4] Barabash O., Kyrianov A.: Development of control laws of unmanned aerial vehicles for performing group flight at the straight-line horizontal flight stage. Advanced Information Systems, 7(4), 2023, 13–20 [https://doi.org/10.20998/2522-9052.2023.4.02].
DOI: https://doi.org/10.20998/2522-9052.2023.4.02   Google Scholar

[5] Deineko L. V.: Development of industry to ensure the growth and renewal of the Ukrainian economy. National Academy of Sciences of Ukraine, State University “Institute of Economics and Forecasting of the National Academy of Sciences of Ukraine”. Kyiv, 2018.
  Google Scholar

[6] Everitt B. et al.: Miscellaneous Clustering Methods. Wiley, 5th Edition, 2011.
  Google Scholar

[7] Govender P., Sivakumar V.: Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019). Atmospheric Pollution Research 11(1), 2020, 40–56 [https://doi.org/10.1016/j.apr.2019.09.009].
DOI: https://doi.org/10.1016/j.apr.2019.09.009   Google Scholar

[8] Kozulya T. V., Yemelyanova D. I.: Environmental risk at different levels of research of natural and man-made systems, information provision of its assessment. Problems of information technologies 17, 2015, 138–144.
  Google Scholar

[9] Laptiev O. et al.: The method of construction of the law of safety management of critical infrastructure objects under the conditions of external uncontrolled influences. CEUR Workshop Proceedings 3624, 2023, 291–300.
  Google Scholar

[10] Li C. et al.: Qualitative determination of volatile substances in different flavored cigarette paper by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometrics. Heliyon 9(1), e12146, 2023, 1–14 [https://doi.org/10.1016/j.heliyon.2022.e12146].
DOI: https://doi.org/10.1016/j.heliyon.2022.e12146   Google Scholar

[11] Malley C. S., Braban C. F., Heal M. R.: The application of hierarchical cluster analysis and non-negative matrix factorization to European atmospheric monitoring site classification. Atmospheric Research 138, 2014, 30–40 [https://doi.org/10.1016/j.atmosres.2013.10.019].
DOI: https://doi.org/10.1016/j.atmosres.2013.10.019   Google Scholar

[12] Ogasawara Y., Kon M.: Two clustering methods based on the Ward's method and dendrograms with interval-valued dissimilarities for interval-valued data. International Journal of Approximate Reasoning 129, 2021, 103–121 [https://doi.org/10.1016/j.ijar.2020.11.001].
DOI: https://doi.org/10.1016/j.ijar.2020.11.001   Google Scholar

[13] Qaddoura R., Faris H., Aljarah I.: An efficient evolutionary algorithm with the nearest neighbor search technique for clustering analysis. J Ambient Intell Human Comput 12, 2021, 8387–8412 [https://doi.org/10.1007/s12652-020-02570-2].
DOI: https://doi.org/10.1007/s12652-020-02570-2   Google Scholar

[14] Radlovska K. O.: A continuously operating automated ecological and technological model of environmental monitoring to increase the level of environmental safety and develop a strategy for the sustainable development of Prykarpattia. Monitoring, modeling and forecasting of the state of the environment 1(11), 2015, 127–140.
  Google Scholar

[15] Shevchenko R. Yu.: Mobile geo-informational system of ecological monitoring of the city of Kyiv as a scientific-methodological model of prevention of risks of anthropogenic influence. Environmental sciences 2(25), 2019, 55–63 [https://doi.org/10.32846/2306-9716-2019-2-25-9].
DOI: https://doi.org/10.32846/2306-9716-2019-2-25-9   Google Scholar

[16] Shvaiko V. et al.: Methods for detecting fires in ecosystems using low-resolution space images. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 11(1), 2021, 15–19 [https://doi.org/10.35784/iapgos.2576].
DOI: https://doi.org/10.35784/iapgos.2576   Google Scholar

[17] Sobchuk V. et al.: Adaptive accumulation and diagnostic information systems of enterprises in energy and industry sectors. E3S Web of Conferences 250, 2021, 82–87 [https://doi.org/10.1051/e3sconf/202125008002].
DOI: https://doi.org/10.1051/e3sconf/202125008002   Google Scholar

[18] Svynchuk O. et al.: Development of the information system for monitoring time changes in forest plantations based on the analysis of space images. Eastern-European Journal of Enterprise Technologies 5(2/119), 2022, 31–41 [https://doi.org/10.15587/1729-4061.2022.265039].
DOI: https://doi.org/10.15587/1729-4061.2022.265039   Google Scholar

[19] Vasiutynska K., Arsirii O., Ivanov O.: Development of the method for assessing the action zones of hazards in an emergency at a city filling station using geoinformation technology. Technology Audit and Production Reserves 6(3/38), 2017, 29–38 [https://doi.org/10.15587/2312-8372.2017.119505].
DOI: https://doi.org/10.15587/2312-8372.2017.119505   Google Scholar

[20] Zhao M., Liu X.: Regional risk assessment for urban major hazards based on GIS geoprocessing to improve public safety. Safety Science 87, 2016, 18–24 [https://doi.org/10.1016/j.ssci.2016.03.016].
DOI: https://doi.org/10.1016/j.ssci.2016.03.016   Google Scholar

[21] [https://minjust.gov.ua/m/samovilne-spalyuvannya-listya-ta-suhoi-travi-poza-zakonom]. (available: 11.04.2024).
  Google Scholar

[22] [https://saveecobot.com] (available: 11.04.2024).
  Google Scholar

[23] [https://asm.kyivcity.gov.ua] (available: 11.04.2024).
  Google Scholar

[24] [https://www.ksv.biz.ua/GOST/DSTY_ALL/DSTU2/dstu_7134-2009.pdf] (available: 11.04.2024).
  Google Scholar

[25] [https://www.kmu.gov.ua/npas/155861368] (available: 11.04.2024).
  Google Scholar

[26] [https://zakon.rada.gov.ua/rada/show/n0002556-00#Text]. (available: 11.04.2024).
  Google Scholar

Download


Published
2024-09-30

Cited by

Barabash, O., Svynchuk, O., Bandurka, O., & Ilin, O. (2024). INFORMATION SYSTEM FOR DETECTION OF PARAMETERS OF DANGEROUS INDUSTRIAL FACILITIES BASED ON GEOINFORMATION TECHNOLOGIES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(3), 9–14. https://doi.org/10.35784/iapgos.6093

Authors

Oleg Barabash 
bar64@ukr.net
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Ukraine
https://orcid.org/0000-0003-1715-0761

Authors

Olha Svynchuk 

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Ukraine
https://orcid.org/0000-0001-9032-6335

Authors

Olena Bandurka 

National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Ukraine
https://orcid.org/0009-0007-2217-7834

Authors

Oleh Ilin 

State University of Information and Communication Technologies Ukraine

Statistics

Abstract views: 60
PDF downloads: 38


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.