PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES
Article Sidebar
Open full text
Issue Vol. 14 No. 3 (2024)
-
THEORETICAL APPROACH FOR DETERMINING AN EMISSIVITY OF SOLID MATERIALS AND ITS COMPARISON WITH EXPERIMENTAL STUDIES ON THE EXAMPLE OF 316L POWDER STEEL
Oleksandr Vasilevskyi, Michael Cullinan, Jared Allison5-8
-
INFORMATION SYSTEM FOR DETECTION OF PARAMETERS OF DANGEROUS INDUSTRIAL FACILITIES BASED ON GEOINFORMATION TECHNOLOGIES
Oleg Barabash, Olha Svynchuk, Olena Bandurka, Oleh Ilin9-14
-
PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES
Yaroslav Romanchuk, Mariia Sokil, Leonid Polishchuk15-20
-
UTILIZING GAUSSIAN PROCESS REGRESSION FOR NONLINEAR MAGNETIC SEPARATION PROCESS IDENTIFICATION
Oleksandr Volovetskyi21-28
-
TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS
Oleh Krulikovskyi, Serhii Haliuk, Ihor Safronov, Valentyn Lesinskyi29-34
-
NEUROBIOLOGICAL PROPERTIES OF THE STRUCTURE OF THE PARALLEL-HIERARCHICAL NETWORK AND ITS USAGE FOR PATTERN RECOGNITION
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Anatolii Horban, Oleksandr Sobovyi, Liudmyla Pogrebniak, Nelia Burlaka, Yurii Didenko, Maksym Kozyr, Ainur Kozbakova35-38
-
MODELS OF FALSE AND CORRECT DETECTION OF INFORMATION LEAKAGE SIGNALS FROM MONITOR SCREENS BY A SPECIALIZED TECHNICAL MEANS OF ENEMY INTELLIGENCE
Dmytro Yevgrafov, Yurii Yaremchuk39-42
-
STREAMLINING DIGITAL CORRELATION-INTERFEROMETRIC DIRECTION FINDING WITH SPATIAL ANALYTICAL SIGNAL
Nurzhigit Smailov, Vitaliy Tsyporenko, Akezhan Sabibolda, Valentyn Tsyporenko, Askar Abdykadyrov, Assem Kabdoldina, Zhandos Dosbayev, Zhomart Ualiyev, Rashida Kadyrova43-48
-
MATHEMATICAL MODEL AND STRUCTURE OF A NEURAL NETWORK FOR DETECTION OF CYBER ATTACKS ON INFORMATION AND COMMUNICATION SYSTEMS
Lubov Zahoruiko, Tetiana Martianova, Mohammad Al-Hiari, Lyudmyla Polovenko, Maiia Kovalchuk, Svitlana Merinova, Volodymyr Shakhov, Bakhyt Yeraliyeva49-55
-
A METHOD FOR FORMING A TRUNCATED POSITIONAL CODE SYSTEM FOR TRANSFORMED VIDEO IMAGES
Volodymyr Barannik, Roman Onyshchenko, Gennady Pris, Mykhailo Babenko, Valeriy Barannik, Vitalii Shmakov, Ivan Pantas56-60
-
Z-NUMBERS BASED MODELING OF GROUP DECISION MAKING FOR SUPPLIER SELECTION IN MANUFACTURING SYSTEMS
Kamala Aliyeva61-67
-
OPTIMIZATION OF AN INTELLIGENT CONTROLLED BRIDGELESS POSITIVE LUO CONVERTER FOR LOW-CAPACITY ELECTRIC VEHICLES
Rangaswamy Balamurugan, Ramasamy Nithya68-70
-
MODIFIED VGG16 FOR ACCURATE BRAIN TUMOR DETECTION IN MRI IMAGERY
Katuri Rama Krishna, Mohammad Arbaaz, Surya Naga Chandra Dhanekula, Yagna Mithra Vallabhaneni71-75
-
IOT BASED ECG: HYBRID CNN-BILSTM APPROACH FOR MYOCARDIAL INFARCTION CLASSIFICATION
Abdelmalek Makhir, My Hachem El Yousfi Alaoui, Larbi Bellarbi, Abdelilah Jilbab76-80
-
INTEGRATED HYBRID MODEL FOR LUNG DISEASE DETECTION THROUGH DEEP LEARNING
Budati Jaya Lakshmi Narayana, Gopireddy Krishna Teja Reddy, Sujana Sri Kosaraju, Sirigiri Rajeev Choudhary81-85
-
POLARIZATION-CORRELATION MAPPING OF MICROSCOPIC IMAGES OF BIOLOGICAL TISSUES OF DIFFERENT MORPHOLOGICAL STRUCTURE
Nataliia Kozan, Oleksandr Saleha, Olexander Dubolazov, Yuriy Ushenko, Iryna Soltys, Oleksandr Ushenko, Oleksandr Olar, Victor Paliy, Saule Smailova86-90
-
REAL-TIME DETECTION AND CLASSIFICATION OF FISH IN UNDERWATER ENVIRONMENT USING YOLOV5: A COMPARATIVE STUDY OF DEEP LEARNING ARCHITECTURES
Rizki Multajam, Ahmad Faisal Mohamad Ayob, W.S. Mada Sanjaya, Aceng Sambas, Volodymyr Rusyn, Andrii Samila91-95
-
WEED DETECTION ON CARROTS USING CONVOLUTIONAL NEURAL NETWORK AND INTERNET OF THING BASED SMARTPHONE
Lintang Patria, Aceng Sambas, Ibrahim Mohammed Sulaiman, Mohamed Afendee Mohamed, Volodymyr Rusyn, Andrii Samila96-100
-
ANALYSIS AND STUDY OF ROLLING PARAMETERS OF COILS ON AN INCLINED PLANE
Larysa Gumeniuk, Lesya Fedik, Volodymyr Didukh, Pavlo Humeniuk101-104
-
ANALYSIS OF CONTENT RECOMMENDATION METHODS IN INFORMATION SERVICES
Oleksandr Necheporuk, Svitlana Vashchenko, Nataliia Fedotova, Iryna Baranova, Yaroslava Dehtiarenko105-108
-
DETERMINING STUDENT'S ONLINE ACADEMIC PERFORMANCE USING MACHINE LEARNING TECHNIQUES
Atika Islam, Faisal Bukhari, Muhammad Awais Sattar, Ayesha Kashif109-117
-
ENTROPY BASED EVALUATION OF THE IMPACT OF EDUCATION ON ECONOMIC DEVELOPMENT
Yelyzaveta Mykhailova, Nataliia Savina, Volodymyr Lytvynenko, Stanislav Mykhailov118-122
-
INFORMATION SYSTEM FOR ASSESSING THE LEVEL OF HUMAN CAPITAL MANAGEMENT
Anzhelika Azarova, Larysa Azarova, Iurii Krak, Olga Ruzakova, Veronika Azarova123-128
-
DECENTRALIZED PLATFORM FOR FINANCING CHARITY PROJECTS
Iryna Segeda, Vladyslav Kotsiuba, Oleksii Shushura, Viktoriia Bokovets, Natalia Koval, Aliya Kalizhanova129-134
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
In the process of operation, the simplest elements (hereinafter elastic bodies) of machines and mechanisms under the influence of external and internal factors carry out complex oscillations ‒ a combination of longitudinal, bending and torsion combinations in various combinations. In general, mathematical models of the process of such complex phenomena in elastic bodies, even for one-dimensional calculation models, are boundary value problems for systems of partial differential equations. A two-dimensional mathematical model of oscillatory processes in a nonlinear elastic body is considered. A method of constructing an analytical solution of the corresponding boundary-value problems for nonlinear partial differential equations is proposed, which is based on the use of Ateba functions, the Van der Pol method, ideas of asymptotic integration, and the principle of single-frequency oscillations. For "undisturbed" analogues of the model equations, single-frequency solutions were obtained in an explicit form, and for "perturbed" ‒ analytical dependences of the basic parameters of the oscillation process on a small perturbation. The dependence of the main frequency of oscillations on the amplitude and non-linearity parameter of elastic properties in the case of single-frequency oscillations of "unperturbed motion" is established. An asymptotic approximation of the solution of the autonomous "perturbed" problem is constructed. Graphs of changes in amplitude and frequency of oscillations depending on the values of the system parameters are given.
Keywords:
References
[1] Andrukhiv A., Huzyk N., Sokil B., Sokil M.: Methodology of investigation the dynamics of longitudinally moving systems under the action of impulse perturbations. IOP Conf. Ser.: Mater. Sci. Eng., 2023, 012005 [https://doi.org/10.1088/1757-899X/1277/1/012005]. DOI: https://doi.org/10.1088/1757-899X/1277/1/012005
[2] Andrukhiv A. et al.: Methodology for increasing the efficiency of dynamic process calculations in elastic elements of complex engineering constructions. Electronics (Switzerland) 10(1), 2021, 1–20 [https://doi.org/10.3390/electronics10010040]. DOI: https://doi.org/10.3390/electronics10010040
[3] Andrukhiv V. et al.: Influence of Impulse Disturbances on Oscillations of Nonlinearly. Elastic Bodies. Mathematics 9(8), 2021, 1–13 [https://doi.org/10.3390/math9080819]. DOI: https://doi.org/10.3390/math9080819
[4] Chen L.-Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 2005, 91–116 [https://doi.org/10.1115/1.1849169]. DOI: https://doi.org/10.1115/1.1849169
[5] Chen L.-Q., Wang B., Ding H.: Nonlinear parametric vibration of axially moving beams: asymptotic analysis and differential quadrature verification. Journal of Physics: Conference, Series 181, 2009, 1–8 [https://doi.org/10.1088/1742-6596/181/1/012008]. DOI: https://doi.org/10.1088/1742-6596/181/1/012008
[6] Cveticanin L:. Period of vibration of axially vibrating truly nonlinear rod. Journal of Sound and Vibration 74, 2016, 199–210. DOI: https://doi.org/10.1016/j.jsv.2016.03.027
[7] Cveticanin L.: Strong Nonlinear Oscillator – Analytical Solutions. Mathematical Engineering. Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-58826-1
[8] Cveticanin L., Pogany T.: Oscillator with a sum of non-integer orders non-linearity. Journal of Applied Mathematics, 2012, 649050.
[9] Delta Function. Mathematics. [Electronic resource]. Available online: https://mathworld.wolfram.com/DeltaFunction.html (accessed on 12 June 2023).
[10] Gendelman O., Vakakis A.: FTransitions from localization to nonlocalization in strongly nonlinear damped oscillators. Chaos, Solitons and Fractals 11(10), 2000, 1535–1542. DOI: https://doi.org/10.1016/S0960-0779(99)00076-4
[11] Huzyk N. et al.: On the external and internal resonance phenomena of the elastic bodies with the complex oscillations. Mathematical modeling and computing 9(1), 2022, 152–158 [https://doi.org/10.23939/mmc2022.01.152]. DOI: https://doi.org/10.23939/mmc2022.01.152
[12] Kapustyan O. V., Perestyuk M. O., Stenzhytskyi O. M.: Extreme problems: theory, examples and methods of solving. Kyiv University Publishing and Printing Center, 2019.
[13] Kharchenko E. V., Sokil M. B.: Oscillations of moving nonlinearly elastic media and the asymptotic method in their study. Scientific bulletin of the National Forestry University of Ukraine 16(1), 2006, 134–138.
[14] Myshkis A. D., Filimonov A. M.: Periodic oscillations in nonlinear one-dimensional continuous media. Proceedings of the IX International Conference on nonlinear oscillations, 1984, 274–276.
[15] Mytropolskyi Yu. O.: On construction of asymptotic solution of the perturbed Klein-Gordon equation. Ukrainian Mathematical Journal 47(9), 1995, 1378–1386. DOI: https://doi.org/10.1007/BF01057512
[16] Nazarkevych M.: Study of dependencies of Beta- and Ateb-functions. Bulletin of the Lviv Polytechnic National University 732, 2012, 207–216.
[17] Olshansky V. P., Olshansky S. V., Tyshchenko L. M.: Dynamics of dissipative oscillators. City print, Kharkiv 2016.
[18] Perestyuk M. O., Chernikova O. S.: Some modern aspects of the asymptotic of the differential equations theory with impulse action. Ukrainian Mathematical Journal 60(1), 2008, 81–90. DOI: https://doi.org/10.1007/s11253-008-0044-5
[19] Polishchuk L., Mamyrbayev O., Gromaszek K.: Mechatronic Systems II. Applications in Material Handling Processes and Robotics. Taylor & Francis Group – CRC Press, Boca Raton, London, New York, Leiden, 2021. DOI: https://doi.org/10.1201/9781003225447
[20] Polishchuk L., Bilyy O., Kharchenko Y.: Prediction of the propagation of crack-like defects in profile elements of the boom of stack discharge conveyor Eastern-European Journal of Enterprise Technologies 6(1), 2016, 44–52. DOI: https://doi.org/10.15587/1729-4061.2016.85502
[21] Shatokhin V. et al.: Vibration diagnostic of wear for cylinder-piston couples of pumps of a radial piston hydromachine, Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control, Taylor & Francis Group, CRC Press, Balkema book London, New York, 2021, 39–52. DOI: https://doi.org/10.1201/9781003224136-4
[22] Senyk P. M.: Inverse of the incomplete Beta function. Ukrainian Mathematical Journal 21(3), 1969, 325–333. DOI: https://doi.org/10.1007/BF01085368
[23] Sokil B. І.: On asymptotic expansions of a boundary value problem for a nonlinear partial differential equation]. Ukrainian Mathematical Journal 34(6), 1982, 803–805. DOI: https://doi.org/10.1007/BF01093588
[24] Sokil B. І.: About one method of constructing single-frequency solutions for a nonlinear wave equation. Ukrainian Mathematical Journal 46(6), 1994, 782–785. DOI: https://doi.org/10.1007/BF02658188
[25] Sokil B. І. et al.: Asymptotic method and wave theory of motion in studying the effect of periodic impulse forces on systems characterized by longitudinal motion velocity. Mathematical modeling and computing 9(4), 2022, 909–920. DOI: https://doi.org/10.23939/mmc2022.04.909
[26] Wójcik W, Pavlov S., Kalimoldayev M.: Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control. Taylor & Francis Group – CRC Press, London, New York, 2021. DOI: https://doi.org/10.1201/9781003224136
[27] Zinkovskii A. et al.: Finite element model for analys of characteristics of shrouded rotor blade vibrations, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 12(4), 2022, 11–16. DOI: https://doi.org/10.35784/iapgos.3264
Article Details
Abstract views: 324

