Integrating path planning and task scheduling in autonomous drone operations
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
ahmed.22csp21@student.uomosul.edu.iq
Abstract
The efficiency and adaptability of drone operations depend heavily on two critical components: path planning and task scheduling. While the literature provides extensive research on these algorithms independently, there is a severe lack of studies addressing their combined impact on drone performance. Hence, this study aims to bridge this gap by developing a comprehensive framework that integrates three path planning algorithms (Spiral, Boustrophedon, and Hybrid) with four task scheduling algorithms (FirstCome First-Served (FCFS), Shortest Processing First (SPF), Earliest Deadline First (EDF), and Priority). The hybrid path planning algorithm is proposed for this work. The framework evaluates each combination's performance based on key metrics, including elapsed time and energy consumption. A virtual simulation environment is designed and implemented for the sake of this study. The results show that combining the SPF scheduling algorithm with Hybrid path planning offers the best balance between time efficiency and energy consumption. The Boustrophedon path planning method shows the highest elapsed times and is generally less efficient than Hybrid and Spiral.
Keywords:
References
Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer communications, 149, 270-299. https://doi.org/10.1016/j.comcom.2019.10.014 DOI: https://doi.org/10.1016/j.comcom.2019.10.014
Alfathe, M., Azhar, A., Ali Othman, A. J., & Kashmola, M. (2025). Adopting complex networks to detect cheat cases in electronic exams. International Journal of Computing and Digital Systems, 17(1), 1-9. http://dx.doi.org/10.12785/ijcds/1571012424 DOI: https://doi.org/10.12785/ijcds/1571012424
Al-Kateeb, Z. N., & Abdullah, D. B. (2024). AdaBoost-powered cloud of things framework for low-latency, energy-efficient chronic kidney disease prediction. Transactions on Emerging Telecommunications Technologies, 35(6), e5007. https://doi.org/10.1002/ett.5007 DOI: https://doi.org/10.1002/ett.5007
Bähnemann, R., Lawrance, N., Chung, J. J., Pantic, M., Siegwart, R. & Nieto, J., 2021. Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem. Field and Service Robotics: Results of the 12th International Conference (pp. 277-290). Springer Singapore. https://doi.org/10.1007/978-981-15-9460-1_20 DOI: https://doi.org/10.1007/978-981-15-9460-1_20
Chiang, H.-T., HomChaudhuri, B., Smith, L., & Tapia, L. (2020). Safety, challenges, and performance of motion planners in dynamic environments. In N. M. Amato, G. Hager, S. Thomas, & M. Torres-Torriti (Eds.), Robotics Research (Vol. 10, pp. 793–808). Springer International Publishing. https://doi.org/10.1007/978-3-030-28619-4_55 DOI: https://doi.org/10.1007/978-3-030-28619-4_55
Du, R., Zhao, T., Dong, X. & Zhu, R. (2022). September. An improved method for the UAV coverage path planning. 2022 4th International Conference on Robotics and Computer Vision (ICRCV) (pp. 325-328). IEEE. https://doi.org/10.1109/ICRCV55858.2022.9953213 DOI: https://doi.org/10.1109/ICRCV55858.2022.9953213
Duan, T., Wang, W., Wang, T., Chen, X., & Li, X. (2020). Dynamic tasks scheduling model of UAV cluster based on flexible network architecture. IEEE Access, 8, 115448–115460. https://doi.org/10.1109/ACCESS.2020.3002594 DOI: https://doi.org/10.1109/ACCESS.2020.3002594
Hadeed, W., & Abdullah, D. (2021). Real-time based big data and e-learning: A survey and open research issues. AL-Rafidain Journal of Computer Sciences and Mathematics, 15(2), 225–243. https://doi.org/10.33899/csmj.2021.170044 DOI: https://doi.org/10.33899/csmj.2021.170044
Hasan, M. Z., & Al‐Rizzo, H. (2019). Task scheduling in internet of things cloud environment using a robust particle swarm optimization. Concurrency and Computation: Practice and Experience, 32(2), e5442. https://doi.org/10.1002/cpe.5442 DOI: https://doi.org/10.1002/cpe.5442
Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99-131. https://doi.org/10.1016/j.paerosci.2017.04.003 DOI: https://doi.org/10.1016/j.paerosci.2017.04.003
Hüppi, M., Bartolomei, L., Mascaro, R., & Chli, M. (2022). T-prm: Temporal probabilistic roadmap for path planning in dynamic environments. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 10320-10327). IEEE. https://doi.org/10.1109/IROS47612.2022.9981739 DOI: https://doi.org/10.1109/IROS47612.2022.9981739
Khosiawan, Y., Park, Y., Moon, I., Nilakantan, J. M., & Nielsen, I. (2019). Task scheduling system for UAV operations in indoor environment. Neural Computing and Applications, 31(9), 5431–5459. https://doi.org/10.1007/s00521-018-3373-9 DOI: https://doi.org/10.1007/s00521-018-3373-9
Liu, H., Tsang, Y. P. and Lee, C. K. M. (2024). A cyber-physical social system for autonomous drone trajectory planning in last-mile superchilling delivery. Transportation Research Part C: Emerging Technologies, 158, 104448. https://doi.org/10.1016/j.trc.2023.104448 DOI: https://doi.org/10.1016/j.trc.2023.104448
Liu, J. W. S. (2006). Real-time systems. Pearson Education.
Liu, S., Jin, Z., Lin, H., & Lu, H. (2024). An improve crested porcupine algorithm for UAV delivery path planning in challenging environments. Scientific Reports, 14, 20445. https://doi.org/10.1038/s41598-024-71485-1 DOI: https://doi.org/10.1038/s41598-024-71485-1
Mahmood, B., Sultan, N. A., Thanoon, K. H., & Khadhim, D. S. (2020). Collaboration networks: university of mosul case study. AL-Rafidain Journal of Computer Sciences and Mathematics, 14(1), 117-133. https://doi.org/10.33899/CSMJ.2020.164679 DOI: https://doi.org/10.33899/csmj.2020.164679
Mantoro, T., Alamsyah, Z., & Ayu, M. A. (2021). Pathfinding for disaster emergency route using Sparse A* and Dijkstra Algorithm with augmented reality. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED) (pp. 1-6). IEEE. https://doi.org/10.1109/icced53389.2021.9664869 DOI: https://doi.org/10.1109/ICCED53389.2021.9664869
Mao, X., Wu, G., Fan, M., Cao, Z., & Pedrycz, W. (2024). DL-DRL: A double-level deep reinforcement learning approach for large-scale task scheduling of multi-UAV. IEEE Transactions on Automation Science and Engineering, 22, 1028-1044. https://doi.org/10.1109/TASE.2024.3358894 DOI: https://doi.org/10.1109/TASE.2024.3358894
Mourya, G. S., Jami, A., Ajith, A., Seikh, A. H. & Kumar, J. S. (2024). Multi-Trajectory Drone surveillance: Amplifying monitoring capabilities in disaster management. 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-6). IEEE. https://doi.org/10.1109/SCEECS61402.2024.10482271 DOI: https://doi.org/10.1109/SCEECS61402.2024.10482271
Niu, Z., Liu, H., Lin, X., & Du, J. (2022). Task scheduling with UAV-assisted dispersed computing for disaster scenario. IEEE Systems Journal, 16(4), 6429–6440. https://doi.org/10.1109/JSYST.2021.3139993 DOI: https://doi.org/10.1109/JSYST.2021.3139993
Pasha, J., Elmi, Z., Purkayastha, S., Fathollahi-Fard, A. M., Ge, Y.-E., Lau, Y.-Y., & Dulebenets, M. A. (2022). The drone scheduling problem: A systematic state-of-the-art Review. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14224–14247. https://doi.org/10.1109/TITS.2022.3155072 DOI: https://doi.org/10.1109/TITS.2022.3155072
Qin, Z., Wang, H., Wei, Z., Qu, Y., Xiong, F., Dai, H., & Wu, T. (2021). Task selection and scheduling in UAV-Enabled MEC for reconnaissance with time-varying priorities. IEEE Internet of Things Journal, 8(24), 17290–17307. https://doi.org/10.1109/JIOT.2021.3078746 DOI: https://doi.org/10.1109/JIOT.2021.3078746
Reda, M., Onsy, A., Haikal, A. Y., & Ghanbari, A. (2024). Path planning algorithms in the autonomous driving system: A comprehensive review. Robotics and Autonomous Systems, 174, 104630. https://doi.org/10.1016/j.robot.2024.104630 DOI: https://doi.org/10.1016/j.robot.2024.104630
Sanders, A. (2016). An introduction to Unreal engine 4. AK Peters/CRC Press. DOI: https://doi.org/10.1201/9781315382555
Shah, S., Dey, D., Lovett, C. & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simulation for autonomous vehicles. Field and Service Robotics: Results of the 11th International Conference (pp. 621-635). Springer International Publishing. https://doi.org/10.1007/978-3-319-67361-5_40 DOI: https://doi.org/10.1007/978-3-319-67361-5_40
Sung, I., Danancier, K., Delphine Ruvio, D., Guillemet, A., & Nielsen, P. (2019). A design of a scheduling system for an unmanned aerial vehicle (UAV) deployment. IFAC-PapersOnLine, 52(13), 1854-1859. https://doi.org/10.1016/j.ifacol.2019.11.472 DOI: https://doi.org/10.1016/j.ifacol.2019.11.472
Wang, Z., Zhang, B., Xiang, Y., & Li, C. (2023). Joint task assignment and path planning for truck and drones in mobile crowdsensing. Peer-to-Peer Networking and Applications, 16, 1668-1679. https://doi.org/10.1007/s12083-022-01389-2 DOI: https://doi.org/10.1007/s12083-022-01389-2
Yang, W., Mao, Y., Chen, X., Chen, C., Lei, B., & He, Q. (2025). A method for simultaneously implementing trajectory planning and DAG task scheduling in multi-UAV assisted edge computing. Ad Hoc Networks, 166, 103668. https://doi.org/10.1016/j.adhoc.2024.103668 DOI: https://doi.org/10.1016/j.adhoc.2024.103668
You, W., Dong, C., Wu, Q., Qu, Y., Wu, Y., & He, R. (2022). Joint task scheduling, resource allocation, and UAV trajectory under clustering for FANETs. China Communications, 19(1), 104–118. https://doi.org/10.23919/JCC.2022.01.009 DOI: https://doi.org/10.23919/JCC.2022.01.009
Zhang, N., Zhang, M. and Low, K. H. (2021). 3D path planning and real-time collision resolution of multirotor drone operations in complex urban low-altitude airspace. Transportation Research Part C: Emerging Technologies, 129, 103123. https://doi.org/10.1016/j.trc.2021.103123 DOI: https://doi.org/10.1016/j.trc.2021.103123
Zhang, Z., Wu, J., Dai, J., & He, C., (2022). Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 236(1), 72-81. https://doi.org/10.1177/09544100211007381 DOI: https://doi.org/10.1177/09544100211007381
Article Details
Abstract views: 274
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
