Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer communications, 149, 270-299. https://doi.org/10.1016/j.comcom.2019.10.014
DOI: https://doi.org/10.1016/j.comcom.2019.10.014
Alfathe, M., Azhar, A., Ali Othman, A. J., & Kashmola, M. (2025). Adopting complex networks to detect cheat cases in electronic exams. International Journal of Computing and Digital Systems, 17(1), 1-9. http://dx.doi.org/10.12785/ijcds/1571012424
DOI: https://doi.org/10.12785/ijcds/1571012424
Al-Kateeb, Z. N., & Abdullah, D. B. (2024). AdaBoost-powered cloud of things framework for low-latency, energy-efficient chronic kidney disease prediction. Transactions on Emerging Telecommunications Technologies, 35(6), e5007. https://doi.org/10.1002/ett.5007
DOI: https://doi.org/10.1002/ett.5007
Bähnemann, R., Lawrance, N., Chung, J. J., Pantic, M., Siegwart, R. & Nieto, J., 2021. Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem. Field and Service Robotics: Results of the 12th International Conference (pp. 277-290). Springer Singapore. https://doi.org/10.1007/978-981-15-9460-1_20
DOI: https://doi.org/10.1007/978-981-15-9460-1_20
Chiang, H.-T., HomChaudhuri, B., Smith, L., & Tapia, L. (2020). Safety, challenges, and performance of motion planners in dynamic environments. In N. M. Amato, G. Hager, S. Thomas, & M. Torres-Torriti (Eds.), Robotics Research (Vol. 10, pp. 793–808). Springer International Publishing. https://doi.org/10.1007/978-3-030-28619-4_55
DOI: https://doi.org/10.1007/978-3-030-28619-4_55
Du, R., Zhao, T., Dong, X. & Zhu, R. (2022). September. An improved method for the UAV coverage path planning. 2022 4th International Conference on Robotics and Computer Vision (ICRCV) (pp. 325-328). IEEE. https://doi.org/10.1109/ICRCV55858.2022.9953213
DOI: https://doi.org/10.1109/ICRCV55858.2022.9953213
Duan, T., Wang, W., Wang, T., Chen, X., & Li, X. (2020). Dynamic tasks scheduling model of UAV cluster based on flexible network architecture. IEEE Access, 8, 115448–115460. https://doi.org/10.1109/ACCESS.2020.3002594
DOI: https://doi.org/10.1109/ACCESS.2020.3002594
Hadeed, W., & Abdullah, D. (2021). Real-time based big data and e-learning: A survey and open research issues. AL-Rafidain Journal of Computer Sciences and Mathematics, 15(2), 225–243. https://doi.org/10.33899/csmj.2021.170044
DOI: https://doi.org/10.33899/csmj.2021.170044
Hasan, M. Z., & Al‐Rizzo, H. (2019). Task scheduling in internet of things cloud environment using a robust particle swarm optimization. Concurrency and Computation: Practice and Experience, 32(2), e5442. https://doi.org/10.1002/cpe.5442
DOI: https://doi.org/10.1002/cpe.5442
Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99-131. https://doi.org/10.1016/j.paerosci.2017.04.003
DOI: https://doi.org/10.1016/j.paerosci.2017.04.003
Hüppi, M., Bartolomei, L., Mascaro, R., & Chli, M. (2022). T-prm: Temporal probabilistic roadmap for path planning in dynamic environments. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 10320-10327). IEEE. https://doi.org/10.1109/IROS47612.2022.9981739
DOI: https://doi.org/10.1109/IROS47612.2022.9981739
Khosiawan, Y., Park, Y., Moon, I., Nilakantan, J. M., & Nielsen, I. (2019). Task scheduling system for UAV operations in indoor environment. Neural Computing and Applications, 31(9), 5431–5459. https://doi.org/10.1007/s00521-018-3373-9
DOI: https://doi.org/10.1007/s00521-018-3373-9
Liu, H., Tsang, Y. P. and Lee, C. K. M. (2024). A cyber-physical social system for autonomous drone trajectory planning in last-mile superchilling delivery. Transportation Research Part C: Emerging Technologies, 158, 104448. https://doi.org/10.1016/j.trc.2023.104448
DOI: https://doi.org/10.1016/j.trc.2023.104448
Liu, J. W. S. (2006). Real-time systems. Pearson Education.
Liu, S., Jin, Z., Lin, H., & Lu, H. (2024). An improve crested porcupine algorithm for UAV delivery path planning in challenging environments. Scientific Reports, 14, 20445. https://doi.org/10.1038/s41598-024-71485-1
DOI: https://doi.org/10.1038/s41598-024-71485-1
Mahmood, B., Sultan, N. A., Thanoon, K. H., & Khadhim, D. S. (2020). Collaboration networks: university of mosul case study. AL-Rafidain Journal of Computer Sciences and Mathematics, 14(1), 117-133. https://doi.org/10.33899/CSMJ.2020.164679
DOI: https://doi.org/10.33899/csmj.2020.164679
Mantoro, T., Alamsyah, Z., & Ayu, M. A. (2021). Pathfinding for disaster emergency route using Sparse A* and Dijkstra Algorithm with augmented reality. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED) (pp. 1-6). IEEE. https://doi.org/10.1109/icced53389.2021.9664869
DOI: https://doi.org/10.1109/ICCED53389.2021.9664869
Mao, X., Wu, G., Fan, M., Cao, Z., & Pedrycz, W. (2024). DL-DRL: A double-level deep reinforcement learning approach for large-scale task scheduling of multi-UAV. IEEE Transactions on Automation Science and Engineering, 22, 1028-1044. https://doi.org/10.1109/TASE.2024.3358894
DOI: https://doi.org/10.1109/TASE.2024.3358894
Mourya, G. S., Jami, A., Ajith, A., Seikh, A. H. & Kumar, J. S. (2024). Multi-Trajectory Drone surveillance: Amplifying monitoring capabilities in disaster management. 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-6). IEEE. https://doi.org/10.1109/SCEECS61402.2024.10482271
DOI: https://doi.org/10.1109/SCEECS61402.2024.10482271
Niu, Z., Liu, H., Lin, X., & Du, J. (2022). Task scheduling with UAV-assisted dispersed computing for disaster scenario. IEEE Systems Journal, 16(4), 6429–6440. https://doi.org/10.1109/JSYST.2021.3139993
DOI: https://doi.org/10.1109/JSYST.2021.3139993
Pasha, J., Elmi, Z., Purkayastha, S., Fathollahi-Fard, A. M., Ge, Y.-E., Lau, Y.-Y., & Dulebenets, M. A. (2022). The drone scheduling problem: A systematic state-of-the-art Review. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14224–14247. https://doi.org/10.1109/TITS.2022.3155072
DOI: https://doi.org/10.1109/TITS.2022.3155072
Qin, Z., Wang, H., Wei, Z., Qu, Y., Xiong, F., Dai, H., & Wu, T. (2021). Task selection and scheduling in UAV-Enabled MEC for reconnaissance with time-varying priorities. IEEE Internet of Things Journal, 8(24), 17290–17307. https://doi.org/10.1109/JIOT.2021.3078746
DOI: https://doi.org/10.1109/JIOT.2021.3078746
Reda, M., Onsy, A., Haikal, A. Y., & Ghanbari, A. (2024). Path planning algorithms in the autonomous driving system: A comprehensive review. Robotics and Autonomous Systems, 174, 104630. https://doi.org/10.1016/j.robot.2024.104630
DOI: https://doi.org/10.1016/j.robot.2024.104630
Sanders, A. (2016). An introduction to Unreal engine 4. AK Peters/CRC Press.
DOI: https://doi.org/10.1201/9781315382555
Shah, S., Dey, D., Lovett, C. & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simulation for autonomous vehicles. Field and Service Robotics: Results of the 11th International Conference (pp. 621-635). Springer International Publishing. https://doi.org/10.1007/978-3-319-67361-5_40
DOI: https://doi.org/10.1007/978-3-319-67361-5_40
Sung, I., Danancier, K., Delphine Ruvio, D., Guillemet, A., & Nielsen, P. (2019). A design of a scheduling system for an unmanned aerial vehicle (UAV) deployment. IFAC-PapersOnLine, 52(13), 1854-1859. https://doi.org/10.1016/j.ifacol.2019.11.472
DOI: https://doi.org/10.1016/j.ifacol.2019.11.472
Wang, Z., Zhang, B., Xiang, Y., & Li, C. (2023). Joint task assignment and path planning for truck and drones in mobile crowdsensing. Peer-to-Peer Networking and Applications, 16, 1668-1679. https://doi.org/10.1007/s12083-022-01389-2
DOI: https://doi.org/10.1007/s12083-022-01389-2
Yang, W., Mao, Y., Chen, X., Chen, C., Lei, B., & He, Q. (2025). A method for simultaneously implementing trajectory planning and DAG task scheduling in multi-UAV assisted edge computing. Ad Hoc Networks, 166, 103668. https://doi.org/10.1016/j.adhoc.2024.103668
DOI: https://doi.org/10.1016/j.adhoc.2024.103668
You, W., Dong, C., Wu, Q., Qu, Y., Wu, Y., & He, R. (2022). Joint task scheduling, resource allocation, and UAV trajectory under clustering for FANETs. China Communications, 19(1), 104–118. https://doi.org/10.23919/JCC.2022.01.009
DOI: https://doi.org/10.23919/JCC.2022.01.009
Zhang, N., Zhang, M. and Low, K. H. (2021). 3D path planning and real-time collision resolution of multirotor drone operations in complex urban low-altitude airspace. Transportation Research Part C: Emerging Technologies, 129, 103123. https://doi.org/10.1016/j.trc.2021.103123
DOI: https://doi.org/10.1016/j.trc.2021.103123
Zhang, Z., Wu, J., Dai, J., & He, C., (2022). Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 236(1), 72-81. https://doi.org/10.1177/09544100211007381
DOI: https://doi.org/10.1177/09544100211007381