Alheeti, K. M. A., Alzahrani, A., Khoshnaw, N., & Al-Dosary, D. (2022). ‘Intelligent deep detection method for malicious tampering of cancer imagery. 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA) (pp. 25–28). IEEE. http://dx.doi.org/10.1109/CDMA54072.2022.00010
DOI: https://doi.org/10.1109/CDMA54072.2022.00010
Budhiraja, R., Kumar, M., Das, M. K., Bafila, A. S., & Singh, S. (2022). ‘MeDiFakeD: Medical deepfake detection using convolutional reservoir networks,. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT) (pp. 1–6). IEEE. http://dx.doi.org/10.1109/GlobConPT57482.2022.9938172
DOI: https://doi.org/10.1109/GlobConPT57482.2022.9938172
Chen, P. (2018). Knee osteoarthritis severity grading dataset. Mendeley. Retrieved March 30, 2025 from https://data.mendeley.com/datasets/56rmx5bjcr/1
Chen, Y., & Esmaeilzadeh, P. (2024). Generative AI in medical practice: In-depth exploration of privacy and security challenges. Journal of Medical Internet Research, 26, e53008. https://doi.org/10.2196/53008
DOI: https://doi.org/10.2196/53008
Cheng, X. (2024). Refining CycleGAN with attention mechanisms and age-Aware training for realistic Deepfakes. Heliyon, 10(16), e36665. https://doi.org/10.1016/j.heliyon.2024.e36665
DOI: https://doi.org/10.1016/j.heliyon.2024.e36665
Cochran, J. D., & Napshin, S. A. (2021). Deepfakes: Awareness, concerns, and platform accountability. Cyberpsychology, Behavior and Social Networking, 24(3), 164–172. https://doi.org/10.1089/cyber.2020.0100
DOI: https://doi.org/10.1089/cyber.2020.0100
Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., & Kohane, I. S. (2019). Adversarial attacks on medical machine learning. Science , 363(6433), 1287–1289. https://doi.org/10.1126/science.aaw4399
DOI: https://doi.org/10.1126/science.aaw4399
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic data augmentation using GAN for improved liver lesion classification. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 289-293). IEEE. https://doi.org/10.1109/ISBI.2018.8363576
DOI: https://doi.org/10.1109/ISBI.2018.8363576
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622
DOI: https://doi.org/10.1145/3422622
Hsu, C.-C., Zhuang, Y.-X., & Lee, C.-Y. (2020). Deep fake image detection based on pairwise learning. Applied Sciences, 10(1), 370. https://doi.org/10.3390/app10010370
DOI: https://doi.org/10.3390/app10010370
Javed, M., Zhang, Z., Dahri, F. H., & Laghari, A. A. (2024). Real-time Deepfake video detection using eye movement analysis with a hybrid deep learning approach. Electronics, 13(15), 2947. https://doi.org/10.3390/electronics13152947
DOI: https://doi.org/10.3390/electronics13152947
Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305–311. https://doi.org/10.1038/s42256-020-0186-1
DOI: https://doi.org/10.1038/s42256-020-0186-1
Karaköse, M., Yetış, H., & Çeçen, M. (2024). A new approach for effective medical deepfake detection in medical images. IEEE Access, 12, 52205-52214. https://doi.org/10.1109/ACCESS.2024.3386644
DOI: https://doi.org/10.1109/ACCESS.2024.3386644
Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4396-4405). IEEE. https://doi.org/10.1109/CVPR.2019.00453
DOI: https://doi.org/10.1109/CVPR.2019.00453
Kim, Y. S., Song, H. J., & Han, J. H. (2022). A study on the development of deepfake-based deep learning algorithm for the detection of medical data manipulation. Webology, 19(1), 4396–4409. https://doi.org/10.14704/web/v19i1/web19289
DOI: https://doi.org/10.14704/WEB/V19I1/WEB19289
Łabuz, M. (2023). Regulating deep fakes in the Artificial Intelligence act. Applied Cybersecurity & Internet Governance, 2(1), 1-42. https://doi.org/10.60097/acig/162856
DOI: https://doi.org/10.60097/ACIG/162856
Latif, G., Brahim, G. B., Mohammad, N., & Alghazo, J. (2024). Combating medical image tampering using deep transfer learning. AIP Conference Proceedings, 3034, 040002. http://dx.doi.org/10.1063/5.0194668
DOI: https://doi.org/10.1063/5.0194668
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
DOI: https://doi.org/10.1016/j.media.2017.07.005
Malatji, M., & Tolah, A. (2024). Artificial intelligence (AI) cybersecurity dimensions: a comprehensive framework for understanding adversarial and offensive AI. AI and Ethics, 5, 883-910. https://doi.org/10.1007/s43681-024-00427-4
DOI: https://doi.org/10.1007/s43681-024-00427-4
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3457607
DOI: https://doi.org/10.1145/3457607
Mirsky, Y., Mahler, T., Shelef, I., & Elovici, Y. (2019). CT-GAN: Malicious tampering of 3D medical imagery using deep learning. 28th USENIX Security Symposium (USENIX Security 19) (pp. 461-478). USENIX Association.
Motamed, S., Rogalla, P., & Khalvati, F. (2021). Data augmentation using generative adversarial networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Informatics in Medicine Unlocked, 27, 100779. https://doi.org/10.1016/j.imu.2021.100779
DOI: https://doi.org/10.1016/j.imu.2021.100779
Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2017). Medical image synthesis with context-aware generative adversarial networks. In M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, & S. Duchesne (Eds.), Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 (Vol. 10435, pp. 417–425). Springer International Publishing. https://doi.org/10.1007/978-3-319-66179-7_48
DOI: https://doi.org/10.1007/978-3-319-66179-7_48
Prezja, F., Paloneva, J., Pölönen, I., Niinimäki, E., & Äyrämö, S. (2022). DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification. Scientific Reports, 12, 18573. https://doi.org/10.1038/s41598-022-23081-4
DOI: https://doi.org/10.1038/s41598-022-23081-4
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv, abs/1511.06434. https://doi.org/10.48550/arXiv.1511.06434
Reichman, B., Jing, L., Akin, O., & Tian, Y. (2021). Medical image tampering detection: A new dataset and baseline. In A. Del Bimbo, R. Cucchiara, S. Sclaroff, G. M. Farinella, T. Mei, M. Bertini, H. J. Escalante, & R. Vezzani (Eds.), Pattern Recognition. ICPR International Workshops and Challenges (Vol. 12661, pp. 266–277). Springer International Publishing. https://doi.org/10.1007/978-3-030-68763-2_20
DOI: https://doi.org/10.1007/978-3-030-68763-2_20
S, A., & Narayan, S. (2024). Detection of GAN-manipulated medical images through deep learning techniques. 2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE) (pp. 1-6). IEEE. https://doi.org/10.1109/AMATHE61652.2024.10582065
DOI: https://doi.org/10.1109/AMATHE61652.2024.10582065
Salah, K., Rehman, M. H. U., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149. https://doi.org/10.1109/access.2018.2890507
DOI: https://doi.org/10.1109/ACCESS.2018.2890507
Seow, J. W., Lim, M. K., Phan, R. C. W., & Liu, J. K. (2022). A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities. Neurocomputing, 513, 351–371. https://doi.org/10.1016/j.neucom.2022.09.135
DOI: https://doi.org/10.1016/j.neucom.2022.09.135
Sharafudeen, M., & Chandra, S. S. (2023). Medical deepfake detection using 3-dimensional neural learning. Artificial Neural Networks in Pattern Recognition: 10th IAPR TC3 Workshop (pp. 169-180). Springer International Publishing. https://doi.org/10.1007/978-3-031-20650-4_14
DOI: https://doi.org/10.1007/978-3-031-20650-4_14
Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19(1), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
DOI: https://doi.org/10.1146/annurev-bioeng-071516-044442
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6¸60. https://doi.org/10.1186/s40537-019-0197-0
DOI: https://doi.org/10.1186/s40537-019-0197-0
Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE transactions on neural networks and learning systems, 32(11), 4793-4813. https://doi.org/10.1109/TNNLS.2020.3027314
DOI: https://doi.org/10.1109/TNNLS.2020.3027314
Tsigos, K., Apostolidis, E., Baxevanakis, S., Papadopoulos, S., & Mezaris, V. (2024). Towards quantitative evaluation of explainable AI methods for deepfake detection. 3rd ACM International Workshop on Multimedia AI against Disinformation. ArXiv, abs/2404.18649. https://doi.org/10.48550/arXiv.2404.18649
DOI: https://doi.org/10.1145/3643491.3660292
Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689
DOI: https://doi.org/10.1371/journal.pmed.1002689
Westerlund, M. (2019). The emergence of deepfake technology: A review. Technology Innovation Management Review, 9(11), 39–52. https://doi.org/10.22215/timreview/1282
DOI: https://doi.org/10.22215/timreview/1282
Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., & Yuille, A. (2017). Adversarial examples for semantic segmentation and object detection. 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 1378-1387). IEEE. https://doi.org/10.1109/ICCV.2017.153
DOI: https://doi.org/10.1109/ICCV.2017.153
Zhang, J., Huang, X., Liu, Y., Han, Y., & Xiang, Z. (2024). GAN-based medical image small region forgery detection via a two-stage cascade framework. PloS One, 19(1), e0290303. https://doi.org/10.1371/journal.pone.0290303
DOI: https://doi.org/10.1371/journal.pone.0290303
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 2242-2251). IEEE. https://doi.org/10.1109/ICCV.2017.244
DOI: https://doi.org/10.1109/ICCV.2017.244