A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Deep fakes pose a significant threat to medical imaging. These deep fakes appear very similar to real diagnostic scans and are often difficult to distinguish from real medical images. This paper discusses how deepfakes are created and highlights their potential for research and education, as well as risks such as misdiagnosis and data manipulation. We also review various deepfake detection techniques, ranging from traditional image forensics to advanced deep learning models, and highlight the strengths and weaknesses of these approaches for detecting sophisticated deepfakes. We also discuss the ethical issues of deepfakes in healthcare, such as patient privacy, data security, informed consent, algorithmic bias, and the potential loss of trust in medical systems. In addition, we present an experimental study that evaluates how well different deep learning models detect deepfakes in a lung CT scan dataset, demonstrating both the potential and limitations of current detection methods. Finally, we outline future research directions, including real-time detection, explicable AI, enhanced cybersecurity, and strengthened ethical guidelines. This review is a valuable resource for researchers, clinicians, and policymakers interested in exploring AI medical imaging and ethics in the age of deepfakes.
Keywords:
References
Alheeti, K. M. A., Alzahrani, A., Khoshnaw, N., & Al-Dosary, D. (2022). ‘Intelligent deep detection method for malicious tampering of cancer imagery. 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA) (pp. 25–28). IEEE. http://dx.doi.org/10.1109/CDMA54072.2022.00010 DOI: https://doi.org/10.1109/CDMA54072.2022.00010
Budhiraja, R., Kumar, M., Das, M. K., Bafila, A. S., & Singh, S. (2022). ‘MeDiFakeD: Medical deepfake detection using convolutional reservoir networks,. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT) (pp. 1–6). IEEE. http://dx.doi.org/10.1109/GlobConPT57482.2022.9938172 DOI: https://doi.org/10.1109/GlobConPT57482.2022.9938172
Chen, P. (2018). Knee osteoarthritis severity grading dataset. Mendeley. Retrieved March 30, 2025 from https://data.mendeley.com/datasets/56rmx5bjcr/1
Chen, Y., & Esmaeilzadeh, P. (2024). Generative AI in medical practice: In-depth exploration of privacy and security challenges. Journal of Medical Internet Research, 26, e53008. https://doi.org/10.2196/53008 DOI: https://doi.org/10.2196/53008
Cheng, X. (2024). Refining CycleGAN with attention mechanisms and age-Aware training for realistic Deepfakes. Heliyon, 10(16), e36665. https://doi.org/10.1016/j.heliyon.2024.e36665 DOI: https://doi.org/10.1016/j.heliyon.2024.e36665
Cochran, J. D., & Napshin, S. A. (2021). Deepfakes: Awareness, concerns, and platform accountability. Cyberpsychology, Behavior and Social Networking, 24(3), 164–172. https://doi.org/10.1089/cyber.2020.0100 DOI: https://doi.org/10.1089/cyber.2020.0100
Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., & Kohane, I. S. (2019). Adversarial attacks on medical machine learning. Science , 363(6433), 1287–1289. https://doi.org/10.1126/science.aaw4399 DOI: https://doi.org/10.1126/science.aaw4399
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic data augmentation using GAN for improved liver lesion classification. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 289-293). IEEE. https://doi.org/10.1109/ISBI.2018.8363576 DOI: https://doi.org/10.1109/ISBI.2018.8363576
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622 DOI: https://doi.org/10.1145/3422622
Hsu, C.-C., Zhuang, Y.-X., & Lee, C.-Y. (2020). Deep fake image detection based on pairwise learning. Applied Sciences, 10(1), 370. https://doi.org/10.3390/app10010370 DOI: https://doi.org/10.3390/app10010370
Javed, M., Zhang, Z., Dahri, F. H., & Laghari, A. A. (2024). Real-time Deepfake video detection using eye movement analysis with a hybrid deep learning approach. Electronics, 13(15), 2947. https://doi.org/10.3390/electronics13152947 DOI: https://doi.org/10.3390/electronics13152947
Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305–311. https://doi.org/10.1038/s42256-020-0186-1 DOI: https://doi.org/10.1038/s42256-020-0186-1
Karaköse, M., Yetış, H., & Çeçen, M. (2024). A new approach for effective medical deepfake detection in medical images. IEEE Access, 12, 52205-52214. https://doi.org/10.1109/ACCESS.2024.3386644 DOI: https://doi.org/10.1109/ACCESS.2024.3386644
Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4396-4405). IEEE. https://doi.org/10.1109/CVPR.2019.00453 DOI: https://doi.org/10.1109/CVPR.2019.00453
Kim, Y. S., Song, H. J., & Han, J. H. (2022). A study on the development of deepfake-based deep learning algorithm for the detection of medical data manipulation. Webology, 19(1), 4396–4409. https://doi.org/10.14704/web/v19i1/web19289 DOI: https://doi.org/10.14704/WEB/V19I1/WEB19289
Łabuz, M. (2023). Regulating deep fakes in the Artificial Intelligence act. Applied Cybersecurity & Internet Governance, 2(1), 1-42. https://doi.org/10.60097/acig/162856 DOI: https://doi.org/10.60097/ACIG/162856
Latif, G., Brahim, G. B., Mohammad, N., & Alghazo, J. (2024). Combating medical image tampering using deep transfer learning. AIP Conference Proceedings, 3034, 040002. http://dx.doi.org/10.1063/5.0194668 DOI: https://doi.org/10.1063/5.0194668
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005 DOI: https://doi.org/10.1016/j.media.2017.07.005
Malatji, M., & Tolah, A. (2024). Artificial intelligence (AI) cybersecurity dimensions: a comprehensive framework for understanding adversarial and offensive AI. AI and Ethics, 5, 883-910. https://doi.org/10.1007/s43681-024-00427-4 DOI: https://doi.org/10.1007/s43681-024-00427-4
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. https://doi.org/10.1145/3457607 DOI: https://doi.org/10.1145/3457607
Mirsky, Y., Mahler, T., Shelef, I., & Elovici, Y. (2019). CT-GAN: Malicious tampering of 3D medical imagery using deep learning. 28th USENIX Security Symposium (USENIX Security 19) (pp. 461-478). USENIX Association.
Motamed, S., Rogalla, P., & Khalvati, F. (2021). Data augmentation using generative adversarial networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Informatics in Medicine Unlocked, 27, 100779. https://doi.org/10.1016/j.imu.2021.100779 DOI: https://doi.org/10.1016/j.imu.2021.100779
Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., & Shen, D. (2017). Medical image synthesis with context-aware generative adversarial networks. In M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, & S. Duchesne (Eds.), Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 (Vol. 10435, pp. 417–425). Springer International Publishing. https://doi.org/10.1007/978-3-319-66179-7_48 DOI: https://doi.org/10.1007/978-3-319-66179-7_48
Prezja, F., Paloneva, J., Pölönen, I., Niinimäki, E., & Äyrämö, S. (2022). DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification. Scientific Reports, 12, 18573. https://doi.org/10.1038/s41598-022-23081-4 DOI: https://doi.org/10.1038/s41598-022-23081-4
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv, abs/1511.06434. https://doi.org/10.48550/arXiv.1511.06434
Reichman, B., Jing, L., Akin, O., & Tian, Y. (2021). Medical image tampering detection: A new dataset and baseline. In A. Del Bimbo, R. Cucchiara, S. Sclaroff, G. M. Farinella, T. Mei, M. Bertini, H. J. Escalante, & R. Vezzani (Eds.), Pattern Recognition. ICPR International Workshops and Challenges (Vol. 12661, pp. 266–277). Springer International Publishing. https://doi.org/10.1007/978-3-030-68763-2_20 DOI: https://doi.org/10.1007/978-3-030-68763-2_20
S, A., & Narayan, S. (2024). Detection of GAN-manipulated medical images through deep learning techniques. 2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE) (pp. 1-6). IEEE. https://doi.org/10.1109/AMATHE61652.2024.10582065 DOI: https://doi.org/10.1109/AMATHE61652.2024.10582065
Salah, K., Rehman, M. H. U., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149. https://doi.org/10.1109/access.2018.2890507 DOI: https://doi.org/10.1109/ACCESS.2018.2890507
Seow, J. W., Lim, M. K., Phan, R. C. W., & Liu, J. K. (2022). A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities. Neurocomputing, 513, 351–371. https://doi.org/10.1016/j.neucom.2022.09.135 DOI: https://doi.org/10.1016/j.neucom.2022.09.135
Sharafudeen, M., & Chandra, S. S. (2023). Medical deepfake detection using 3-dimensional neural learning. Artificial Neural Networks in Pattern Recognition: 10th IAPR TC3 Workshop (pp. 169-180). Springer International Publishing. https://doi.org/10.1007/978-3-031-20650-4_14 DOI: https://doi.org/10.1007/978-3-031-20650-4_14
Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19(1), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442 DOI: https://doi.org/10.1146/annurev-bioeng-071516-044442
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6¸60. https://doi.org/10.1186/s40537-019-0197-0 DOI: https://doi.org/10.1186/s40537-019-0197-0
Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE transactions on neural networks and learning systems, 32(11), 4793-4813. https://doi.org/10.1109/TNNLS.2020.3027314 DOI: https://doi.org/10.1109/TNNLS.2020.3027314
Tsigos, K., Apostolidis, E., Baxevanakis, S., Papadopoulos, S., & Mezaris, V. (2024). Towards quantitative evaluation of explainable AI methods for deepfake detection. 3rd ACM International Workshop on Multimedia AI against Disinformation. ArXiv, abs/2404.18649. https://doi.org/10.48550/arXiv.2404.18649 DOI: https://doi.org/10.1145/3643491.3660292
Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689 DOI: https://doi.org/10.1371/journal.pmed.1002689
Westerlund, M. (2019). The emergence of deepfake technology: A review. Technology Innovation Management Review, 9(11), 39–52. https://doi.org/10.22215/timreview/1282 DOI: https://doi.org/10.22215/timreview/1282
Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., & Yuille, A. (2017). Adversarial examples for semantic segmentation and object detection. 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 1378-1387). IEEE. https://doi.org/10.1109/ICCV.2017.153 DOI: https://doi.org/10.1109/ICCV.2017.153
Zhang, J., Huang, X., Liu, Y., Han, Y., & Xiang, Z. (2024). GAN-based medical image small region forgery detection via a two-stage cascade framework. PloS One, 19(1), e0290303. https://doi.org/10.1371/journal.pone.0290303 DOI: https://doi.org/10.1371/journal.pone.0290303
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 2242-2251). IEEE. https://doi.org/10.1109/ICCV.2017.244 DOI: https://doi.org/10.1109/ICCV.2017.244
Article Details
Abstract views: 451
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
