Appling Power BI for improved retail business analytics and decision-making
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
In the rapidly evolving retail industry, data-driven decision making is critical to maintaining competitive advantage and operational efficiency. This paper explores the diverse applications of Microsoft Power BI (MPBI) in retail, highlighting its impact on real-time data management, sales analysis, inventory optimization, customer insights, and supply chain performance. By synthesizing findings from recent studies and presenting empirical data from case studies, we demonstrate how Power BI's advanced analytics and visualization capabilities can transform raw data into actionable insights. Our research underscores the importance of integrating disparate data sources into a unified platform, facilitating comprehensive data analysis, and fostering a culture of data literacy across retail organizations. We also discuss the challenges and best practices for implementing Power BI across retail functions, highlighting its role in driving innovation and adapting to emerging market trends. The results of this study provide practical insights for retailers seeking to leverage data analytics for strategic decision-making and operational excellence.
Keywords:
References
Afikah, P., Affandi, I. R., & Hasan, F. N. (2022). Implementasi business intelligence untuk menganalisis data kasus virus corona di Indonesia menggunakan platform tableau. Pseudocode, 9(1), 25-32. https://doi.org/10.33369/pseudocode.9.1.25-32 DOI: https://doi.org/10.33369/pseudocode.9.1.25-32
Al Rumhi, S., & Sivakumar, J. (2023). Sales analysis-review and recommendations on business intelligence. 24th International Arab Conference on Information Technology (ACIT) (pp. 1-10). IEEE. https://doi.org/10.1109/ACIT58888.2023.10453770 DOI: https://doi.org/10.1109/ACIT58888.2023.10453770
Ali, S. M., Gupta, N., Nayak, G. K., & Lenka, R. K. (2016). Big data visualization: Tools and challenges. 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I) (pp. 656-660). IEEE. https://doi.org/10.1109/IC3I.2016.7918044 DOI: https://doi.org/10.1109/IC3I.2016.7918044
Allam, S. (2017). Exploratory study for big data visualization in the internet of things. International Journal of Creative Research Thoughts, 5(3), 805-809.
Alqhatani, A., Ashraf, M. S., Ferzund, J., Shaf, A., Abosaq, H. A., Rahman, S., Irfan, M., & Alqhtani, S. M. (2022). 360 Retail business analytics by adopting hybrid machine learning and a business intelligence approach. Sustainability, 14(19), 11942. https://doi.org/10.3390/su141911942 DOI: https://doi.org/10.3390/su141911942
Ameer, M., Rahul, S. P., & Manne, S. (2020). Human resource analytics using Power BI visualization tool. 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1184-1189). IEEE. https://doi.org/10.1109/ICICCS48265.2020.9120897 DOI: https://doi.org/10.1109/ICICCS48265.2020.9120897
Anardani, S., Azis, M. N. L., & Asyhari, M. Y. (2023). The implementation of business intelligence to analyze sales trends in the indofishing online store using Power BI. Brilliance: Research of Artificial Intelligence, 3(2), 300-305. https://doi.org/10.47709/brilliance.v3i2.3232 DOI: https://doi.org/10.47709/brilliance.v3i2.3232
Arora, S., & Rani, R. (2018). A streamlined approach for real-time data analytics. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 732-736). IEEE. https://doi.org/10.1109/ICICCT.2018.8473040 DOI: https://doi.org/10.1109/ICICCT.2018.8473040
Banerjee, K., Das, S., & Nath, S. (2023). Data visualization approach for business strategy recommendation using Power BI dashboard. International Journal of Research in Management, 6(1), 168-175. https://doi.org/10.51386/25816659/ijles-v6i5p101 DOI: https://doi.org/10.33545/26648792.2024.v6.i1b.138
Belghith, M., Ammar, H. B., Elloumi, A., & Hachicha, W. (2024). A new rolling forecasting framework using Microsoft Power BI for data visualization: A case study in a pharmaceutical industry. Annales Pharmaceutiques Françaises, 82(3), 493-506. https://doi.org/10.1016/j.pharma.2023.10.013 DOI: https://doi.org/10.1016/j.pharma.2023.10.013
Hosen, M. S., Islam, R., Naeem, Z., Folorunso, E. O., Chu, T. S., Al Mamun, M. A., & Orunbon, N. O. (2024). Data-driven decision making: Advanced database systems for business intelligence. Nanofabricated Materials for Optical Communication and Intelligent Manufacturing, 20(3), S3. http://dx.doi.org/10.62441/nano-ntp.v20iS3.51 DOI: https://doi.org/10.62441/nano-ntp.v20iS3.51
James, G. G., Oise, G. P., Chukwu, E. G., Michael, N. A., Ekpo, W. F., & Okafor, P. E. (2024). Optimizing business intelligence system using big data and machine learning. Journal of Information Systems and Informatics, 6(2), 1215-1236. https://doi.org/10.51519/journalisi.v6i2.631 DOI: https://doi.org/10.51519/journalisi.v6i2.631
Libby, T., Schwebke, J. M., & Goldwater, P. M. (2022). Using data analytics to evaluate the drivers of revenue: An introductory case study using Microsoft Power Pivot and Power BI. Issues in Accounting Education, 37(4), 97-105. https://doi.org/10.2308/ISSUES-2021-057 DOI: https://doi.org/10.2308/ISSUES-2021-057
Mohammed, A. K., & Panda, B. B. (2024). Enhancement of predictive analytics using AI models: A framework for real-time decision support systems. International Journal of Advanced Research in Computer and Communication Engineering, 13(11). 80-90. https://doi.org/10.17148/IJARCCE.2024.131108 DOI: https://doi.org/10.17148/IJARCCE.2024.131108
Murugan, S., Daniel, K. L., Ananthi, M., Rajkumar, P., & Jenitha, S. S. (2024). Retail store sales analysis: Unveiling insights through Power BI business analytics. International Conference on Innovative Computing & Communication (ICICC 2024). SSRN. https://doi.org/10.2139/ssrn.5039793 DOI: https://doi.org/10.2139/ssrn.5039793
Mutlu, B., Veas, E., & Trattner, C. (2016). Vizrec: Recommending personalized visualizations. ACM Transactions on Interactive Intelligent Systems, 6(4), 1-39. https://doi.org/10.1145/2983923 DOI: https://doi.org/10.1145/2983923
Nabil, D. H., Rahman, M. H., Chowdhury, A. H., & Menezes, B. C. (2023). Managing supply chain performance using a real time Microsoft Power BI dashboard by action design research (ADR) method. Cogent Engineering, 10(2), 2257924. https://doi.org/10.1080/23311916.2023.2257924 DOI: https://doi.org/10.1080/23311916.2023.2257924
Palma-Ruiz, J. M., Torres-Toukoumidis, A., González-Moreno, S. E., & Valles-Baca, H. G. (2022). An overview of the gaming industry across nations: Using analytics with Power BI to forecast and identify key influencers. Heliyon, 8(2), e08959. https://doi.org/10.1016/j.heliyon.2022.e08959 DOI: https://doi.org/10.1016/j.heliyon.2022.e08959
Rai, A., Misra, M., & Sar, S. K. (2024). An exploratory study on visualizing big data in the Internet of Things. International Conference On Smart And Innovative Development In Science, Engineering & Technology. AIP Publishing. https://doi.org/10.1063/5.0221663 DOI: https://doi.org/10.1063/5.0221663
Seto, F. C. P., Daryanto, Y., & Astanti, R. D. (2023). Business intelligence for decision support system for replenishment policy in mining industry. International Journal of Industrial Engineering and Engineering Management, 5(1), 51-60. https://doi.org/10.24002/ijieem.v5i1.7245 DOI: https://doi.org/10.24002/ijieem.v5i1.7245
Seyi-Lande, O. B., Johnson, E., Adeleke, G. S., Amajuoyi, C. P., & Simpson, B. D. (2024). Enhancing business intelligence in e-commerce: Utilizing advanced data integration for real-time insights. International Journal of Management & Entrepreneurship Research, 6(6), 1936-1953. https://doi.org/10.51594/ijmer.v6i6.1207 DOI: https://doi.org/10.51594/ijmer.v6i6.1207
Sharma, K., Shetty, A., Jain, A., & Dhanare, R. K. (2021). A comparative analysis on various business intelligence (BI), data science and data analytics tools. 2021 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-11). IEEE. https://doi.org/10.1109/ICCCI50826.2021.9402226 DOI: https://doi.org/10.1109/ICCCI50826.2021.9402226
Shubho, O. Q., Tumpa, Z. N., Dipto, W. I. R., & Alam, M. R. (2022). Real-time data visualization using business intelligence techniques in small and medium enterprises for making a faster decision on sales data. In P. M. Jeyanthi, T. Choudhury, D. Hack-Polay, T. P. Singh, & S. Abujar (Eds.), Decision Intelligence Analytics and the Implementation of Strategic Business Management (pp. 189–198). Springer International Publishing. https://doi.org/10.1007/978-3-030-82763-2_17 DOI: https://doi.org/10.1007/978-3-030-82763-2_17
Simon, P. (2014). The visual organization: Data visualization, big data, and the quest for better decisions. John Wiley & Sons.
Surwade, N. B., Shiragapur, B., & Hussain, A. (2024). Data visualization and dashboard design for enterprise intelligence. Metaheuristics for Enterprise Data Intelligence, 71-91. DOI: https://doi.org/10.1201/9781032699806-5
Yadav, L. S., Lakshmi, T. V., & Alekya, V. (2024). Retail insights: Unveiling e-commerce dynamics with Power BI. International Research Journal on Advanced Engineering and Management, 2(05), 1680-1682. https://doi.org/10.47392/IRJAEM.2024.0241 DOI: https://doi.org/10.47392/IRJAEM.2024.0241
Article Details
Abstract views: 565
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
