Digital solutions for risk management in sustainable development conditions of business ecosystems
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The article's objective is to conduct theoretical research of modern digital solutions for risk management in business ecosystems and develop an intelligent digital tool for risk management under sustainable development conditions. A comprehensive analysis of modern technologies that include artificial intelligence, big data, and blockchain, is conducted, their role in improving risk management efficiency is determined. The research methodology combines both theoretical methods (systems analysis, comparative analysis, SWOT analysis) and empirical methods (statistical analysis, machine learning methods, and experimental research). The main categories of risks are systematized, and possibilities for their optimization through digital solutions are explored. The impact of digital technologies on achieving sustainable development goals is analyzed, particularly in aspects of efficient resource usage, social integration, and innovation development. Key challenges of digital transformation in risk management are identified, including cybersecurity issues and regulatory requirements compliance. The practical application of machine learning methods for predicting employee attrition is examined, demonstrating the potential of digital solutions in solving specific business challenges. A prediction system that uses various machine learning algorithms was developed and tested. A comparative analysis of the effectiveness of various machine learning algorithms for the prediction task was conducted. When selecting the optimal classifier, both standard quality metrics and probability distribution analysis for identifying risk groups were taken into account. A modular system structure is proposed, and practical recommendations for implementing digital solutions in business ecosystems are provided.
Keywords:
References
Adner, R. (2006). Match your innovation strategy to your innovation ecosystem. Harvard Business Review, 84(4), 98–107.
Adner, R. (2017). Ecosystem as structure: An actionable construct for strategy. Journal of Management, 43(1), 39-58. https://doi.org/10.1177/0149206316678451 DOI: https://doi.org/10.1177/0149206316678451
Allen, D. W., Berg, C., & Novak, M. (2018). Blockchain: An entangled political economy approach. Journal of Public Finance and Public Choice, 33(2), 105-125. https://doi.org/10.1332/251569118X15282111163993 DOI: https://doi.org/10.1332/251569118X15282111163993
Bondarenko, L., Moroz, N., Zhelizniak, R., & Bonetskyy, O. (2022). Fintech market development in the world and in Ukraine. Financial and Credit Activity Problems of Theory and Practice, 6(41), 121–127. https://doi.org/10.18371/fcaptp.v6i41.251410 DOI: https://doi.org/10.18371/fcaptp.v6i41.251410
Bouhsaien, L., & Azmani, A. (2024). The potential of artificial intelligence in human resource management. Applied Computer Science, 20(3), 153–170. https://doi.org/10.35784/acs-2024-34 DOI: https://doi.org/10.35784/acs-2024-34
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W W Norton & Co.
Chernenko, N. (2022). Artificial intelligence in personnel management. Taurida Scientific Herald. Series: Economics, (12), 76-83. https://doi.org/10.32851/2708-0366/2022.12.11 DOI: https://doi.org/10.32851/2708-0366/2022.12.11
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
Dennis, M. J., Aizenberg, E. (2022). The ethics of AI in human resources. Ethics and Information Technology, 24, 25. https://doi.org/10.1007/s10676-022-09653-y DOI: https://doi.org/10.1007/s10676-022-09653-y
Domashenko, S., Hres-Yevreinova, S., Zadoia, Y., Starostenko, D., & Salin, S. (2023). Blockchain and fintech technologies in the digital space of financial and industrial companies. Sustainable Engineering and Innovation, 5(2), 281-302. https://doi.org/10.37868/sei.v5i2.id232 DOI: https://doi.org/10.37868/sei.v5i2.id232
Dorfman, M. S. (1997). Introduction to Risk Management and Insurance (6 ed.). Pearson Prentice Hall, Saddle River, NJ.
Fernandes França, T. J., São Mamede, H., Pereira Barroso, J. M., & Pereira Duarte dos Santos, V. M. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. https://doi.org/10.1016/j.heliyon.2023.e14694 DOI: https://doi.org/10.1016/j.heliyon.2023.e14694
Figay, N., Ghodous, P., Khalfallah, M., & Barhamgi, M. (2012). Interoperability framework for dynamic manufacturing networks. Computers in Industry, 63(8), 749–755. https://doi.org/10.1016/j.compind.2012.08.008 DOI: https://doi.org/10.1016/j.compind.2012.08.008
Gawer, A. (2014). Bridging differing perspectives on technological platforms: Toward an integrative framework. Research policy, 43(7), 1239–1249. https://doi.org/10.1016/j.respol.2014.03.006 DOI: https://doi.org/10.1016/j.respol.2014.03.006
Geng, Z. (2022). Blockchain with real and sharing economy. BCP Business & Management, 24, 96-102. https://doi.org/10.54691/bcpbm.v24i.1446 DOI: https://doi.org/10.54691/bcpbm.v24i.1446
Greshko, R., & Kharabara, V. (2023). Current state, dynamics and prospects of investing in crypto assets in Ukraine. Investytsiyi: praktyka ta dosvid, 12, 77-82. https://doi.org/10.32702/2306-6814.2023.12.77 DOI: https://doi.org/10.32702/2306-6814.2023.12.77
Iansiti, M., & Levien, R. (2004). Strategy as ecology. Harvard Business Review, 82(3), 68–78.
Jacobides, M. G., Cennamo, C., & Gawer, A. (2018). Towards a theory of ecosystems. Strategic management journal, 39(8), 2255–2276. https://doi.org/10.1002/smj.2904 DOI: https://doi.org/10.1002/smj.2904
Kabulova, J., & Stankevičienė, J. (2020). Valuation of FinTech innovation based on patent applications. Sustainability, 12(23), 10158. https://doi.org/10.3390/su122310158 DOI: https://doi.org/10.3390/su122310158
Korpela, K., Mikkonen, K., Hallikas, J. & Pynnönen, M. (2016). Digital business ecosystem transformation - towards cloud integration. 49th Hawaii International Conference on System Sciences (HICSS) (pp. 3959-3968). IEEE. https://doi.org/10.1109/HICSS.2016.491 DOI: https://doi.org/10.1109/HICSS.2016.491
Kravchuk, О., Varis, І., & Kalenska, N. (2024). HR management transformation through the prism of artificial intelligence: A comprehensive analysis of implementation, challenges and ethical aspects. Problems of Modern Transformations. Series: Economics and Management, (15). https://doi.org/10.54929/2786-5738-2024-15-04-09 DOI: https://doi.org/10.54929/2786-5738-2024-15-04-09
Liu, R. (2024). Application for machine learning methods in financial risk management. Highlights in Science, Engineering and Technology, 88, 775–778. https://doi.org/10.54097/stt1va49 DOI: https://doi.org/10.54097/stt1va49
Mitchell, V.-W. (1995). Organizational risk perception and reduction: a literature review. British Journal of Management, 6(2), 115-133. https://doi.org/10.1111/j.1467-8551.1995.tb00089.x DOI: https://doi.org/10.1111/j.1467-8551.1995.tb00089.x
Moore, J. F. (1993). Predators and prey: a new ecology of competition. Harvard Business Review, 71(3), 75-86.
Nayak, B., Bhattacharyya, S. S., Krishnamoorthy, B. (2022). Customer value creation - A case study of indian health insurance industry from value net perspective. Journal of Health Management, 24(4), 539-555. https://doi.org/10.1177/09720634221128083 DOI: https://doi.org/10.1177/09720634221128083
Palos-Sánchez, P. R., Baena-Luna, P., Badicu, A., & Infante-Moro, J. C. (2022). Artificial intelligence and human resources management: A bibliometric analysis. Applied Artificial Intelligence, 36(1), . https://doi.org/10.1080/08839514.2022.2145631 DOI: https://doi.org/10.1080/08839514.2022.2145631
Peltoniemi, M. (2006). Preliminary theoretical framework for the study of business ecosystems. Emergence: Complexity and Organization, 8(1), 10-19.
Pizhuk, O. І. (2021). Structural changes of income by ukrainian households in digitalization conditions. Visnyk ekonomichnoi nauky Ukrainy, 1(40), 153-158. https://doi.org/10.37405/1729-7206.2021.1(40).153-158 DOI: https://doi.org/10.37405/1729-7206.2021.1(40).153-158
Senyo, P. K., Liu, K., & Effah, J. (2019). Digital business ecosystem: Literature review and a framework for future research. International Journal of Information Management, 47, 52–64. https://doi.org/10.1016/j.ijinfomgt.2019.01.002 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.01.002
Singh, S., Mohan, R., Deshpande, A., Nukala, S., Dwadasi, V. S. A., Jilani, S. (2024). Artificial intelligence and machine learning in financial services: Risk management and fraud detection. Journal of Electrical Systems, 20(6s), 1418-1424. https://doi.org/10.52783/jes.2929 DOI: https://doi.org/10.52783/jes.2929
Smith, D. (2013). Navigating risk when entering and participating in a business ecosystem. Technology Innovation Management Review, 3(5), 25-33. http://doi.org/10.22215/timreview/685 DOI: https://doi.org/10.22215/timreview/685
Tapscott, D., & Tapscott, A. (2016). Blockchain Revolution: How the Technology behind Bitcoin Is Changing Money, Business, and the World. Penguin, New York.
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2021). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398 DOI: https://doi.org/10.1080/09585192.2020.1871398
Woods, S. A., Ahmed, S., Nikolaou, I., Costa, A. C., & Anderson, N. R. (2019). Personnel selection in the digital age: a review of validity and applicant reactions, and future research challenges. European Journal of Work and Organizational Psychology, 29(1), 64–77. https://doi.org/10.1080/1359432X.2019.1681401 DOI: https://doi.org/10.1080/1359432X.2019.1681401
Zamlynskyi, V., Tolkachova, H., & Ihumentseva, N. (2023). Strengthening economic security of enterprises through strategic risk management in uncertainsy. Modeling the development of the economic systems, (3), 186–196. https://doi.org/10.31891/mdes/2023-9-25 DOI: https://doi.org/10.31891/mdes/2023-9-25
Zhang, Y., & Lai, X. (2022). Fintech development and green innovation - evidence from China. BCP Business & Management, 18, 494-506. http://dx.doi.org/10.54691/bcpbm.v18i.590 DOI: https://doi.org/10.54691/bcpbm.v18i.590
Article Details
Abstract views: 262
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
