Alshamlan, H. M., Badr, G. H., & Alohali, Y. A. (2015). Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification. Computational Biology and Chemistry, 56, 49–60. https://doi.org/10.1016/j.compbiolchem.2015.03.001
DOI: https://doi.org/10.1016/j.compbiolchem.2015.03.001
Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A. (2015). Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(5), 971–989. https://doi.org/10.1109/tcbb.2015.2478454
DOI: https://doi.org/10.1109/TCBB.2015.2478454
Aziz, R., Verma, C., & Srivastava, N. (2016). A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data. Genomics Data, 8, 4–15. https://doi.org/10.1016/j.gdata.2016.02.012
DOI: https://doi.org/10.1016/j.gdata.2016.02.012
Baliarsingh, S. K., Vipsita, S., Gandomi, A. H., Panda, A., Bakshi, S., & Ramasubbareddy, S. (2020). Analysis of high-dimensional genomic data using MapReduce based probabilistic neural network. Computer Methods and Programs in Biomedicine, 195, 105625. https://doi.org/10.1016/j.cmpb.2020.105625
DOI: https://doi.org/10.1016/j.cmpb.2020.105625
Bochinski, E., Senst, T., & Sikora, T. (2017). Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. 2017 IEEE international conference on image processing (ICIP) (pp. 3924-3928). IEEE. https://doi.org/10.1109/ICIP.2017.8297018
DOI: https://doi.org/10.1109/ICIP.2017.8297018
Botlagunta, M., Botlagunta, M. D., Myneni, M. B., Lakshmi, D., Nayyar, A., Gullapalli, J. S., & Shah, M. A. (2023). Classification and diagnostic prediction of breast cancer metastasis on clinical data using machine learning algorithms. Scientific Reports, 13(1), 485. https://doi.org/10.1038/s41598-023-27548-w
DOI: https://doi.org/10.1038/s41598-023-27548-w
Chen, Y.-W., & Lin, C.-J. (2006). Combining SVMs with various feature selection strategies. In I. Guyon, M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature Extraction (Vol. 207, pp. 315–324). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35488-8_13
DOI: https://doi.org/10.1007/978-3-540-35488-8_13
Debata, P. P., & Mohapatra, P. (2022). Selection of informative genes from high-dimensional cancerous data employing an improvised meta-heuristic algorithm. Evolutionary Intelligence, 15, 1841-1859. https://doi.org/10.1007/s12065-021-00593-y
DOI: https://doi.org/10.1007/s12065-021-00593-y
Díaz-Uriarte, R., & De Andrés, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3. https://doi.org/10.1186/1471-2105-7-3
DOI: https://doi.org/10.1186/1471-2105-7-3
Kilicarslan, S., Adem, K., & Celik, M. (2020). Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network. Medical Hypotheses, 137, 109577. https://doi.org/10.1016/j.mehy.2020.109577
DOI: https://doi.org/10.1016/j.mehy.2020.109577
Kumar, M., & Rath, S. K. (2015). Classification of microarray using MapReduce based proximal support vector machine classifier. Knowledge-Based Systems, 89, 584–602. https://doi.org/10.1016/j.knosys.2015.09.005
DOI: https://doi.org/10.1016/j.knosys.2015.09.005
Kumar, M., Singhal, S., Shekhar, S., Sharma, B., & Srivastava, G. (2022). Optimized stacking ensemble learning model for breast cancer detection and classification using machine learning. Sustainability, 14(21), 13998. https://doi.org/10.3390/su142113998
DOI: https://doi.org/10.3390/su142113998
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
DOI: https://doi.org/10.1038/nature14539
Liao, Q., Jiang, L., Wang, X., Zhang, C., & Ding, Y. (2017). Cancer classification with multi-task deep learning. 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) (pp. 76-81). IEEE. https://doi.org/10.1109/spac.2017.8304254
DOI: https://doi.org/10.1109/SPAC.2017.8304254
Liu, J., Wang, X., Cheng, Y., & Zhang, L. (2017). Tumor gene expression data classification via sample expansion-based deep learning. Oncotarget, 8(65), 109646–109660. https://doi.org/10.18632/oncotarget.22762
DOI: https://doi.org/10.18632/oncotarget.22762
Ludwig, S. A., Jakobovic, D., & Picek, S. (2015). Analyzing gene expression data: Fuzzy decision tree algorithm applied to the classification of cancer data. 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 1-8). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2015.7337854
DOI: https://doi.org/10.1109/FUZZ-IEEE.2015.7337854
Medjahed, S. A., Saadi, T. A., Benyettou, A., & Ouali, M. (2017). Kernel-based learning and feature selection analysis for cancer diagnosis. Applied Soft Computing, 51, 39-48. https://doi.org/10.1016/j.asoc.2016.12.010
DOI: https://doi.org/10.1016/j.asoc.2016.12.010
Mohapatra, P., Chakravarty, S., & Dash, P. (2016). Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system. Swarm and Evolutionary Computation, 28, 144–160. https://doi.org/10.1016/j.swevo.2016.02.002
DOI: https://doi.org/10.1016/j.swevo.2016.02.002
Panda, M. (2017). Elephant search optimization combined with deep neural network for microarray data analysis. Journal of King Saud University - Computer and Information Sciences, 32(8), 940–948. https://doi.org/10.1016/j.jksuci.2017.12.002
DOI: https://doi.org/10.1016/j.jksuci.2017.12.002
Polat, K., & Güneş, S. (2009). A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Systems With Applications, 36(7), 10367–10373. https://doi.org/10.1016/j.eswa.2009.01.041
DOI: https://doi.org/10.1016/j.eswa.2009.01.041
Radhakrishnan, M., Sampathila, N., Muralikrishna, H., & Swathi, K. S. (2024). Advancing ovarian cancer diagnosis through deep learning and eXplainable AI: A multiclassification approach. IEEE Access, 12, 116968-116986. https://doi.org/10.1109/ACCESS.2024.3448219
DOI: https://doi.org/10.1109/ACCESS.2024.3448219
Sharma, S., Saha, A. K., Roy, S., Mirjalili, S., & Nama, S. (2022). A mixed sine cosine butterfly optimization algorithm for global optimization and its application. Cluster Computing, 25, 4573-4600. https://doi.org/10.1007/s10586-022-03649-5
DOI: https://doi.org/10.1007/s10586-022-03649-5
Shilaskar, S., Ghatol, A., & Chatur, P. (2017). Medical decision support system for extremely imbalanced datasets. Information Sciences, 384, 205–219. https://doi.org/10.1016/j.ins.2016.08.077
DOI: https://doi.org/10.1016/j.ins.2016.08.077
Wang, G. G., Deb, S., & Cui, Z. (2019a). Monarch butterfly optimization. Neural computing and Applications, 31, 1995-2014. https://doi.org/10.1007/s00521-015-1923-y
DOI: https://doi.org/10.1007/s00521-015-1923-y
Wang, Y., Yang, X.-G., & Lu, Y. (2019b). Informative gene selection for microarray classification via adaptive elastic net with conditional mutual information. Applied Mathematical Modelling, 71, 286-297. https://doi.org/10.1016/j.apm.2019.01.044
DOI: https://doi.org/10.1016/j.apm.2019.01.044
Yoo, J.-H., Yoon, H.-I., Kim, H.-G., Yoon, H.-S., & Han, S.-S. (2019). Optimization of hyper-parameter for CNN model using genetic algorithm. 2019 1st International conference on electrical, control and instrumentation engineering (ICECIE) (pp. 1-6). IEEE. https://doi.org/10.1109/ICECIE47765.2019.8974762
DOI: https://doi.org/10.1109/ICECIE47765.2019.8974762
Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018). Gene selection and classification of microarray data using convolutional neural network. 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145-150). IEEE. https://doi.org/10.1109/ICOASE.2018.8548836
DOI: https://doi.org/10.1109/ICOASE.2018.8548836