A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Unlocking novel insights from gene expression of individual patient profiles, clinicians and researchers can discern patterns, biomarkers, and therapies. Moreover, accurate classification enables the development of predictive models for prognosis and treatment response, facilitating personalized medicine approaches. Determining the optimal model for classification remains a time-consuming nondeterministic polynomial-time hard issue. However, available voluminous gene expression data is too much to handle for the traditional data analysis approaches. Therefore, a two phase ensembled deep learning approach can be considered as a dependable framework for the root level investigation of genomic data. In this experimental model, a gene extraction approach, a kernel applied Fisher score (KFScore) method is presented to select the prominent genomes, and sine-cosine ensembled Monarch Butterfly algorithm (SC-MBO) optimized CNN (Convolutional Neural Network) strategy is implemented for genomic data classification. Here, the SC-MBO ensembled approach is used to get the optimal value of the hyperparameters in CNN. The effectiveness of the presented model is estimated by accuracy% of classification, number of extracted prominent genomic feature, sensitivity, specificity, and ROC (Receiver Operating Characteristic) curve. The suggested methods' efficacy is successfully tested in GSE13159, GSE15061, GSE13204, Breast Cancer, and Ovarian cancer gene expression dataset with 91.6%, 90.22%, 91.9%, 97.93% and 99.6% accuracy. The suggested model is also contrasted with that of other existing models. According to experimental evaluation, the suggested strategy is accurate, reliable, and robust. Consequently, the presented method can be treated as a trustworthy foundation for disease risk prediction.
Keywords:
References
Alshamlan, H. M., Badr, G. H., & Alohali, Y. A. (2015). Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification. Computational Biology and Chemistry, 56, 49–60. https://doi.org/10.1016/j.compbiolchem.2015.03.001 DOI: https://doi.org/10.1016/j.compbiolchem.2015.03.001
Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A. (2015). Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(5), 971–989. https://doi.org/10.1109/tcbb.2015.2478454 DOI: https://doi.org/10.1109/TCBB.2015.2478454
Aziz, R., Verma, C., & Srivastava, N. (2016). A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data. Genomics Data, 8, 4–15. https://doi.org/10.1016/j.gdata.2016.02.012 DOI: https://doi.org/10.1016/j.gdata.2016.02.012
Baliarsingh, S. K., Vipsita, S., Gandomi, A. H., Panda, A., Bakshi, S., & Ramasubbareddy, S. (2020). Analysis of high-dimensional genomic data using MapReduce based probabilistic neural network. Computer Methods and Programs in Biomedicine, 195, 105625. https://doi.org/10.1016/j.cmpb.2020.105625 DOI: https://doi.org/10.1016/j.cmpb.2020.105625
Bochinski, E., Senst, T., & Sikora, T. (2017). Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. 2017 IEEE international conference on image processing (ICIP) (pp. 3924-3928). IEEE. https://doi.org/10.1109/ICIP.2017.8297018 DOI: https://doi.org/10.1109/ICIP.2017.8297018
Botlagunta, M., Botlagunta, M. D., Myneni, M. B., Lakshmi, D., Nayyar, A., Gullapalli, J. S., & Shah, M. A. (2023). Classification and diagnostic prediction of breast cancer metastasis on clinical data using machine learning algorithms. Scientific Reports, 13(1), 485. https://doi.org/10.1038/s41598-023-27548-w DOI: https://doi.org/10.1038/s41598-023-27548-w
Chen, Y.-W., & Lin, C.-J. (2006). Combining SVMs with various feature selection strategies. In I. Guyon, M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature Extraction (Vol. 207, pp. 315–324). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35488-8_13 DOI: https://doi.org/10.1007/978-3-540-35488-8_13
Debata, P. P., & Mohapatra, P. (2022). Selection of informative genes from high-dimensional cancerous data employing an improvised meta-heuristic algorithm. Evolutionary Intelligence, 15, 1841-1859. https://doi.org/10.1007/s12065-021-00593-y DOI: https://doi.org/10.1007/s12065-021-00593-y
Díaz-Uriarte, R., & De Andrés, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3. https://doi.org/10.1186/1471-2105-7-3 DOI: https://doi.org/10.1186/1471-2105-7-3
Kilicarslan, S., Adem, K., & Celik, M. (2020). Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network. Medical Hypotheses, 137, 109577. https://doi.org/10.1016/j.mehy.2020.109577 DOI: https://doi.org/10.1016/j.mehy.2020.109577
Kumar, M., & Rath, S. K. (2015). Classification of microarray using MapReduce based proximal support vector machine classifier. Knowledge-Based Systems, 89, 584–602. https://doi.org/10.1016/j.knosys.2015.09.005 DOI: https://doi.org/10.1016/j.knosys.2015.09.005
Kumar, M., Singhal, S., Shekhar, S., Sharma, B., & Srivastava, G. (2022). Optimized stacking ensemble learning model for breast cancer detection and classification using machine learning. Sustainability, 14(21), 13998. https://doi.org/10.3390/su142113998 DOI: https://doi.org/10.3390/su142113998
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539
Liao, Q., Jiang, L., Wang, X., Zhang, C., & Ding, Y. (2017). Cancer classification with multi-task deep learning. 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC) (pp. 76-81). IEEE. https://doi.org/10.1109/spac.2017.8304254 DOI: https://doi.org/10.1109/SPAC.2017.8304254
Liu, J., Wang, X., Cheng, Y., & Zhang, L. (2017). Tumor gene expression data classification via sample expansion-based deep learning. Oncotarget, 8(65), 109646–109660. https://doi.org/10.18632/oncotarget.22762 DOI: https://doi.org/10.18632/oncotarget.22762
Ludwig, S. A., Jakobovic, D., & Picek, S. (2015). Analyzing gene expression data: Fuzzy decision tree algorithm applied to the classification of cancer data. 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 1-8). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2015.7337854 DOI: https://doi.org/10.1109/FUZZ-IEEE.2015.7337854
Medjahed, S. A., Saadi, T. A., Benyettou, A., & Ouali, M. (2017). Kernel-based learning and feature selection analysis for cancer diagnosis. Applied Soft Computing, 51, 39-48. https://doi.org/10.1016/j.asoc.2016.12.010 DOI: https://doi.org/10.1016/j.asoc.2016.12.010
Mohapatra, P., Chakravarty, S., & Dash, P. (2016). Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system. Swarm and Evolutionary Computation, 28, 144–160. https://doi.org/10.1016/j.swevo.2016.02.002 DOI: https://doi.org/10.1016/j.swevo.2016.02.002
Panda, M. (2017). Elephant search optimization combined with deep neural network for microarray data analysis. Journal of King Saud University - Computer and Information Sciences, 32(8), 940–948. https://doi.org/10.1016/j.jksuci.2017.12.002 DOI: https://doi.org/10.1016/j.jksuci.2017.12.002
Polat, K., & Güneş, S. (2009). A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Systems With Applications, 36(7), 10367–10373. https://doi.org/10.1016/j.eswa.2009.01.041 DOI: https://doi.org/10.1016/j.eswa.2009.01.041
Radhakrishnan, M., Sampathila, N., Muralikrishna, H., & Swathi, K. S. (2024). Advancing ovarian cancer diagnosis through deep learning and eXplainable AI: A multiclassification approach. IEEE Access, 12, 116968-116986. https://doi.org/10.1109/ACCESS.2024.3448219 DOI: https://doi.org/10.1109/ACCESS.2024.3448219
Sharma, S., Saha, A. K., Roy, S., Mirjalili, S., & Nama, S. (2022). A mixed sine cosine butterfly optimization algorithm for global optimization and its application. Cluster Computing, 25, 4573-4600. https://doi.org/10.1007/s10586-022-03649-5 DOI: https://doi.org/10.1007/s10586-022-03649-5
Shilaskar, S., Ghatol, A., & Chatur, P. (2017). Medical decision support system for extremely imbalanced datasets. Information Sciences, 384, 205–219. https://doi.org/10.1016/j.ins.2016.08.077 DOI: https://doi.org/10.1016/j.ins.2016.08.077
Wang, G. G., Deb, S., & Cui, Z. (2019a). Monarch butterfly optimization. Neural computing and Applications, 31, 1995-2014. https://doi.org/10.1007/s00521-015-1923-y DOI: https://doi.org/10.1007/s00521-015-1923-y
Wang, Y., Yang, X.-G., & Lu, Y. (2019b). Informative gene selection for microarray classification via adaptive elastic net with conditional mutual information. Applied Mathematical Modelling, 71, 286-297. https://doi.org/10.1016/j.apm.2019.01.044 DOI: https://doi.org/10.1016/j.apm.2019.01.044
Yoo, J.-H., Yoon, H.-I., Kim, H.-G., Yoon, H.-S., & Han, S.-S. (2019). Optimization of hyper-parameter for CNN model using genetic algorithm. 2019 1st International conference on electrical, control and instrumentation engineering (ICECIE) (pp. 1-6). IEEE. https://doi.org/10.1109/ICECIE47765.2019.8974762 DOI: https://doi.org/10.1109/ICECIE47765.2019.8974762
Zeebaree, D. Q., Haron, H., & Abdulazeez, A. M. (2018). Gene selection and classification of microarray data using convolutional neural network. 2018 International Conference on Advanced Science and Engineering (ICOASE) (pp. 145-150). IEEE. https://doi.org/10.1109/ICOASE.2018.8548836 DOI: https://doi.org/10.1109/ICOASE.2018.8548836
Article Details
Abstract views: 181
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
