Apache Flink. (n.d.). What is Apache Flink? - Architecture. Retrieved December 20, 2024 from https://flink.apache.org/what-is-flink/flink-architecture
Apache Spark. (2025, May 29). MLlib is Apache Spark’s scalable machine learning library.Retrieved January 5, 2025 from https://spark.apache.org/mllib/
Bazdaric, K., Sverko, D., Salaric, I., Martinovic, A., & Lucijanic, M. (2021). The ABC of linear regression analysis: What every author and editor should know. European Science Editing, 47, e63780. https://doi.org/10.3897/ese.2021.e63780
DOI: https://doi.org/10.3897/ese.2021.e63780
Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., & Tzoumas, K. (2017). State management in Apache Flink®: Consistent stateful distributed stream processing. VLDB Endowment, 10(12), 1718–1729. https://doi.org/10.14778/3137765.3137777
DOI: https://doi.org/10.14778/3137765.3137777
Choi, H., & Lee, J. (2021). Efficient use of GPU memory for large-scale deep learning model training. Applied Sciences, 11(21), 10377. https://doi.org/10.3390/app112110377
DOI: https://doi.org/10.3390/app112110377
Dritsas, E., & Trigka, M. (2025). Exploring the intersection of machine learning and big data: A survey. Machine Learning and Knowledge Extraction, 7(1), 13. https://doi.org/10.3390/make7010013
DOI: https://doi.org/10.3390/make7010013
Gao, H., Kou, G., Liang, H., Zhang, H., Chao, X., Li, C.-C., & Dong, Y. (2024). Machine learning in business and finance: A literature review and research opportunities. Financial Innovation, 10, 86. https://doi.org/10.1186/s40854-024-00629-z
DOI: https://doi.org/10.1186/s40854-024-00629-z
Jin, X., & Han, J. (2011). K-Means clustering. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning (pp. 563–564). Springer US. https://doi.org/10.1007/978-0-387-30164-8_425
DOI: https://doi.org/10.1007/978-0-387-30164-8_425
Khalid, M., & Yousaf, M. M. (2021). A comparative analysis of big data frameworks: An adoption perspective. Applied Sciences, 11(22), 11033. https://doi.org/10.3390/app112211033
DOI: https://doi.org/10.3390/app112211033
Krizhevsky, A. (n.d.). The CIFAR-10 dataset. Retrieved December 28, 2024, from https://www.cs.toronto.edu/~kriz/cifar.html
Lopes, N., & Ribeiro, B. (2015). Support Vector Machines (SVMs). In N. Lopes & B. Ribeiro, Machine Learning for Adaptive Many-Core Machines—A Practical Approach (Vol. 7, pp. 85–105). Springer International Publishing. https://doi.org/10.1007/978-3-319-06938-8_5
DOI: https://doi.org/10.1007/978-3-319-06938-8_5
Markou, G., Bakas, N. P., Chatzichristofis, S. A., & Papadrakakis, M. (2024). A general framework of high-performance machine learning algorithms: Application in structural mechanics. Computational Mechanics, 73, 705–729. https://doi.org/10.1007/s00466-023-02386-9
DOI: https://doi.org/10.1007/s00466-023-02386-9
Nightlies Apache. (2022, February 2). Concepts & Common API. Retrieved December 20, 2024 from https://nightlies.apache.org/flink/flink-docs-release-1.3/dev/table/common.html
Nightlies Apache. (n.d.). Flink ML: Apache Flink Machine Learning Library. Retrieved December 25, 2024 from https://nightlies.apache.org/flink/flink-ml-docs-stable/
Ning, Z., Iradukunda, H. N., Zhang, Q., & Zhu, T. (2021). Benchmarking machine learning: How fast can your algorithms go? ArXiv, abs/2101.03219. https://doi.org/10.48550/arXiv.2101.03219
Pacella, M., Papa, A., Papadia, G., & Fedeli, E. (2025). A scalable framework for sensor data ingestion and real-time processing in cloud manufacturing. Algorithms, 18(1), 22. https://doi.org/10.3390/a18010022
DOI: https://doi.org/10.3390/a18010022
Tang, S., He, B., Yu, C., Li, Y., & Li, K. (2020). A survey on spark ecosystem for big data processing. IEEE Transactions on Knowledge and Data Engineering, 34(1), 71-91. https://doi.org/10.1109/TKDE.2020.2975652
DOI: https://doi.org/10.1109/TKDE.2020.2975652
Theodorakopoulos, L., Karras, A., & Krimpas, G. A. (2025). Optimizing apache spark MLlib: Predictive performance of large-scale models for big data analytics. Algorithms, 18(2), 74. https://doi.org/10.3390/a18020074
DOI: https://doi.org/10.3390/a18020074
Wongpanich, A., Oguntebi, T., Paredes, J. B., Wang, Y. E., Phothilimthana, P. M., Mitra, R., Zhou, Z., Kumar, N., & Reddi, V. J. (2025). Machine learning fleet efficiency: Analyzing and optimizing large-scale Google TPU systems with ML productivity goodput. ArXiv, abs/2502.06982. https://doi.org/10.48550/arXiv.2502.06982
Zeydan, E., & Mangues-Bafalluy, J. (2022). Recent advances in data engineering for networking. IEEE Access, 10, 34449–34496. https://doi.org/10.1109/ACCESS.2022.3162863
DOI: https://doi.org/10.1109/ACCESS.2022.3162863