Predictive modeling of telemedicine implementation in central Asia using neural networks
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
abdrakhmanova.zhannur@inbox.ru
Abstract
The rapid development of digital technologies has transformed healthcare systems around the world, and telemedicine has become the primary solution to problems related to the availability and quality of medical care. This study examines the adoption of telemedicine in five Central Asian countries - Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, and Turkmenistan - by modeling the relationship between key medical, demographic, and technological factors and the number of telemedicine users. To identify the factors that contribute to telemedicine adoption, a dataset of epidemiological, demographic, and digital infrastructure indicators was analyzed. For the analysis, data from the National Statistical Office of the Republic of Kazakhstan (2014-2024) were used. To predict the number of telemedicine users, an artificial neural network (ANN) was used, which has a shallow network structure with four input neurons representing the main predictors and one output neuron for potential telemedicine users. The predictive model showed excellent accuracy, as evidenced by a very strong correlation between predicted and observed values (R = 0.99245). In addition, the reliability of the model is confirmed by its low error rates, with a mean squared error (MSE) of 0.007 and a root mean squared error (RMSE) of 0.0839. These findings underscore the transformative potential of telemedicine to address health challenges in Central Asia, while providing valuable insights into the epidemiological, demographic, and technological drivers that can guide targeted policy initiatives and strategic investments in digital infrastructure.
Keywords:
References
Bashshur, R., Doarn, C. R., Frenk, J. M., Kvedar, J. C., & Woolliscroft, J. O. (2020). Telemedicine and the COVID-19 pandemic, lessons for the future. Telemedicine and e-Health, 26(5), 571–573. https://doi.org/10.1089/tmj.2020.29040.rb DOI: https://doi.org/10.1089/tmj.2020.29040.rb
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391 DOI: https://doi.org/10.1001/jama.2017.18391
Cheng, T. C., & Yip, W. (2024). Policies, progress, and prospects for internet telemedicine in China. Health systems and reform, 10(2), 2389570. https://doi.org/10.1080/23288604.2024.2389570 DOI: https://doi.org/10.1080/23288604.2024.2389570
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101 DOI: https://doi.org/10.1136/svn-2017-000101
Katsaliaki, K. (2024). Factors influencing use of eHealth services during and after the COVID 19 pandemic. Health Services Management Research, 38(2), 97-106. https://doi.org/10.1177/09514848241275777 DOI: https://doi.org/10.1177/09514848241275777
Kruse, C. S., Karem, P., Shifflett, K., Vegi, L., Ravi, K., & Brooks, M. (2016). Evaluating barriers to adopting telemedicine worldwide: A systematic review. Journal of Telemedicine and Telecare, 24(1), 4-12. https://doi.org/10.1177/1357633X16674087 DOI: https://doi.org/10.1177/1357633X16674087
Kruse, C. S., Krowski, N., Rodriguez, B., Tran, L., Vela, J., & Brooks, M. (2017). Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open, 7(8), e016242. https://doi.org/10.1136/bmjopen-2017-016242 DOI: https://doi.org/10.1136/bmjopen-2017-016242
Kuo, T. T., Kim, H. E., & Ohno-Machado, L. (2017). Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association, 24(6), 1211–1220. https://doi.org/10.1093/jamia/ocx068 DOI: https://doi.org/10.1093/jamia/ocx068
Makhlouf, Z., Laimeche, L., Meraoumia, A., & Haouam, M. Y. (2024). Enhancing medical data security in e-health systems using biometric-based watermarking. Applied Computer Science, 20(1), 28–55. https://doi.org/10.35784/ACS-2024-03 DOI: https://doi.org/10.35784/acs-2024-03
Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2017). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6, 26094. https://doi.org/10.1038/srep26094 DOI: https://doi.org/10.1038/srep26094
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., Litsch, K., … Dean, J. (2018). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1), 18. https://doi.org/10.1038/s41746-018-0029-1 DOI: https://doi.org/10.1038/s41746-018-0029-1
Razzak, M. I., Imran, M., & Xu, G. (2019). Big data analytics for preventive medicine. Neural Computing and Applications, 32(9), 4417–4451. https://doi.org/10.1007/s00521-019-04095-y DOI: https://doi.org/10.1007/s00521-019-04095-y
Regin, R., & Rajest, S. S. (2024). Leveraging data-driven intelligence for remote patient monitoring in digital health. Central Asian Journal of Medical and Natural Science, 5(4), 798–808.
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25, 44–56. https://doi.org/10.1038/s41591-018-0300-7 DOI: https://doi.org/10.1038/s41591-018-0300-7
Tsvetanov, F. (2024). Integrating AI technologies into remote monitoring patient systems. Engineering Proceedings, 70(1), 54. https://doi.org/10.3390/engproc2024070054 DOI: https://doi.org/10.3390/engproc2024070054
Velayati, F., Ayatollahi, H., Hemmat, M., Dehghan, R. (2022). Telehealth business models and their components: Systematic review. Journal of Medical Internet Research, 24(3), e33128. https://doi.org/10.2196/33128 DOI: https://doi.org/10.2196/33128
Younis, M. C. (2024). Prediction of patient’s willingness for treatment of mental illness using machine learning approaches. Applied Computer Science, 20(2), 175–193. https://doi.org/10.35784/ACS-2024-23 DOI: https://doi.org/10.35784/acs-2024-23
Article Details
Abstract views: 247
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
