Bashshur, R., Doarn, C. R., Frenk, J. M., Kvedar, J. C., & Woolliscroft, J. O. (2020). Telemedicine and the COVID-19 pandemic, lessons for the future. Telemedicine and e-Health, 26(5), 571–573. https://doi.org/10.1089/tmj.2020.29040.rb
DOI: https://doi.org/10.1089/tmj.2020.29040.rb
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391
DOI: https://doi.org/10.1001/jama.2017.18391
Cheng, T. C., & Yip, W. (2024). Policies, progress, and prospects for internet telemedicine in China. Health systems and reform, 10(2), 2389570. https://doi.org/10.1080/23288604.2024.2389570
DOI: https://doi.org/10.1080/23288604.2024.2389570
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
DOI: https://doi.org/10.1136/svn-2017-000101
Katsaliaki, K. (2024). Factors influencing use of eHealth services during and after the COVID 19 pandemic. Health Services Management Research, 38(2), 97-106. https://doi.org/10.1177/09514848241275777
DOI: https://doi.org/10.1177/09514848241275777
Kruse, C. S., Karem, P., Shifflett, K., Vegi, L., Ravi, K., & Brooks, M. (2016). Evaluating barriers to adopting telemedicine worldwide: A systematic review. Journal of Telemedicine and Telecare, 24(1), 4-12. https://doi.org/10.1177/1357633X16674087
DOI: https://doi.org/10.1177/1357633X16674087
Kruse, C. S., Krowski, N., Rodriguez, B., Tran, L., Vela, J., & Brooks, M. (2017). Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open, 7(8), e016242. https://doi.org/10.1136/bmjopen-2017-016242
DOI: https://doi.org/10.1136/bmjopen-2017-016242
Kuo, T. T., Kim, H. E., & Ohno-Machado, L. (2017). Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association, 24(6), 1211–1220. https://doi.org/10.1093/jamia/ocx068
DOI: https://doi.org/10.1093/jamia/ocx068
Makhlouf, Z., Laimeche, L., Meraoumia, A., & Haouam, M. Y. (2024). Enhancing medical data security in e-health systems using biometric-based watermarking. Applied Computer Science, 20(1), 28–55. https://doi.org/10.35784/ACS-2024-03
DOI: https://doi.org/10.35784/acs-2024-03
Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2017). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, 6, 26094. https://doi.org/10.1038/srep26094
DOI: https://doi.org/10.1038/srep26094
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., Litsch, K., … Dean, J. (2018). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1), 18. https://doi.org/10.1038/s41746-018-0029-1
DOI: https://doi.org/10.1038/s41746-018-0029-1
Razzak, M. I., Imran, M., & Xu, G. (2019). Big data analytics for preventive medicine. Neural Computing and Applications, 32(9), 4417–4451. https://doi.org/10.1007/s00521-019-04095-y
DOI: https://doi.org/10.1007/s00521-019-04095-y
Regin, R., & Rajest, S. S. (2024). Leveraging data-driven intelligence for remote patient monitoring in digital health. Central Asian Journal of Medical and Natural Science, 5(4), 798–808.
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25, 44–56. https://doi.org/10.1038/s41591-018-0300-7
DOI: https://doi.org/10.1038/s41591-018-0300-7
Tsvetanov, F. (2024). Integrating AI technologies into remote monitoring patient systems. Engineering Proceedings, 70(1), 54. https://doi.org/10.3390/engproc2024070054
DOI: https://doi.org/10.3390/engproc2024070054
Velayati, F., Ayatollahi, H., Hemmat, M., Dehghan, R. (2022). Telehealth business models and their components: Systematic review. Journal of Medical Internet Research, 24(3), e33128. https://doi.org/10.2196/33128
DOI: https://doi.org/10.2196/33128
Younis, M. C. (2024). Prediction of patient’s willingness for treatment of mental illness using machine learning approaches. Applied Computer Science, 20(2), 175–193. https://doi.org/10.35784/ACS-2024-23
DOI: https://doi.org/10.35784/acs-2024-23