Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The Internet of Things (IoT) is a new technology that builds on the old Internet. A network connects all objects using technologies such as Radio Frequency Identification (RFID), sensors, GPS, or Machine-to-Machine (M2M) communication. The development of IoT has been negatively impacted by security concerns, which has led to a significant increase in research interest. However, very few methods look at the security of IoT from the attacker's point of view. As of today, penetration testing is a common way to check the security of traditional internet or systems. It usually takes a lot of time and money. In this paper, we look at the security problems of the Internet of Things (IoT) and suggest a way to test for them. This way is based on a combination of the belief-desire intention (BDI) model and machine learning. The results of the experiments showed that they were very good at detecting and defending against cyberattacks on IoT devices. The proposed BDI-based recall method provided 85% of the results. The 90% precision suggests that the measurements are very accurate. The F1-score was 87.4%, and the accuracy was 95%. The proposed BDI is of exceptional quality in every part of the penetration-testing model. Therefore, it is possible to create a system that can detect and defend against cyberattacks based on the proposed BDI model.
Keywords:
References
Abu-Dabaseh, F., & Alshammari, E. (2018). Automated penetration testing: An overview. 4th International Conference on Natural Language Computing (NATL 2018). http://dx.doi.org/10.5121/csit.2018.80610 DOI: https://doi.org/10.5121/csit.2018.80610
Abu-Ein, A. A., Abuain, W. A., Alhafnawi, M. Q., & Al-Hazaimeh, O. M. (2025). Security enhanced dynamic bandwidth allocation-based reinforcement learning. WSEAS Transactions on Information Science and Applications, 22(1), 21-27. https://doi.org/10.37394/23209.2025.22.3 DOI: https://doi.org/10.37394/23209.2025.22.3
Al-Hazaimeh, O. M., & Al-Smadi, M. (2019). Automated pedestrian recognition based on deep convolutional neural networks. International Journal of Machine Learning and Computing, 9(5), 662-667. http://dx.doi.org/10.18178/ijmlc.2019.9.5.855 DOI: https://doi.org/10.18178/ijmlc.2019.9.5.855
Al-Hazaimeh, O. M., & Al-Smadi, M. A. (2023). Vehicle to vehicle and vehicle to ground communication-speech encryption algorithm. 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (pp. 1-4). IEEE. http://dx.doi.org/10.1109/ICECCME57830.2023.10252814 DOI: https://doi.org/10.1109/ICECCME57830.2023.10252814
Al-Hazaimeh, O. M., Abu-Ein, A. A., Al-Nawashi, M. M., & Gharaibeh, N. Y. (2022). Chaotic based multimedia encryption: a survey for network and internet security. Bulletin of Electrical Engineering and Informatics, 11(4), 2151-2159. https://doi.org/10.11591/eei.v11i4.3520 DOI: https://doi.org/10.11591/eei.v11i4.3520
Al-Hazaimeh, O. M., Alhindawi, N., & Otoum, N. A. (2014). A novel video encryption algorithm-based on speaker voice as the public key. 2014 IEEE International Conference on Control Science and Systems Engineering (pp. 180-184). IEEE. http://dx.doi.org/10.1109/CCSSE.2014.7224533 DOI: https://doi.org/10.1109/CCSSE.2014.7224533
Al-Hazaimeh, O. M., Al-Smadi, A., Abuain, T., & Abu-Ein, A. A. (2025). End-to-end cybersecurity encryption-video algorithm. WSEAS Transactions on Computer Research, 13, 116-123. http://dx.doi.org/10.37394/232018.2025.13.12 DOI: https://doi.org/10.37394/232018.2025.13.12
Ali Khattak, H,. Ali Shah, M., Khan, S., Ali, I., Imran, M. (2019). Perception layer security in Internet of Things. Future Generation Computer Systems, 100, 144-164. https://doi.org/10.1016/j.future.2019.04.038 DOI: https://doi.org/10.1016/j.future.2019.04.038
Al-Nawashi, M. M., Al-Hazaimeh, O. M., & Khazaaleh, M. Kh. (2024). New approach for breast cancer detection based on machine learning techniques. Applied Computer Science, 20(1), 1-16. https://doi.org/10.35784/acs-2024-01 DOI: https://doi.org/10.35784/acs-2024-01
Al-Nawashi, M. M., Al-hazaimeh, O. M., Nedal, T. M., Gharaibeh, N., Abu-Ain, W., & Abu-Ain, T. (2025). Deep reinforcement learning-based framework for enhancing cybersecurity. International Journal of Interactive Mobile Technologies, 19(3), 170-190. http://dx.doi.org/10.3991/ijim.v19i03.50727 DOI: https://doi.org/10.3991/ijim.v19i03.50727
Al-Qasrawi, I. S., & Al-Hazaimeh, O. M. (2013). A pair-wise key establishment scheme for AD HOC networks. International Journal of Computer Networks & Communications, 5(2), 125-136. http://dx.doi.org/10.5121/ijcnc.2013.5210 DOI: https://doi.org/10.5121/ijcnc.2013.5210
Al-Sarawi, S., Anbar, M., Abdullah, R., & Al Hawari, A. B. (2020). Internet of things market analysis forecasts, 2020–2030. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4) (pp. 449-453). IEEE. https://doi.org/10.1109/WorldS450073.2020.9210375 DOI: https://doi.org/10.1109/WorldS450073.2020.9210375
Bella, G., Biondi, P., Bognanni, S., & Esposito, S. (2023). Petiot: Penetration testing the internet of things. Internet of Things, 22, 100707. https://doi.org/10.1016/j.iot.2023.100707 DOI: https://doi.org/10.1016/j.iot.2023.100707
Bello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of device-to-device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52-62. https://doi.org/10.1016/j.adhoc.2016.06.010 DOI: https://doi.org/10.1016/j.adhoc.2016.06.010
Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ramage, D., Segal, A., & Seth, K. (2017). Practical secure aggregation for privacy-preserving machine learning. 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS '17). Association for Computing Machinery. https://doi.org/10.1145/3133956.3133982 DOI: https://doi.org/10.1145/3133956.3133982
Borgohain, T., Kumar, U., & Sanyal, S. (2015). Survey of security and privacy issues of internet of things. ArXiv, abs/1501.02211. https://doi.org/10.48550/arXiv.1501.02211
Borthakur, D., Dubey, H., Constant, N., Mahler, L., & Mankodiya, K. (2017). Smart fog: Fog computing framework for unsupervised clustering analytics in wearable internet of things. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 472-476). IEEE. https://doi.org/10.1109/GlobalSIP.2017.8308687 DOI: https://doi.org/10.1109/GlobalSIP.2017.8308687
Bout, E., Loscri, V., & Gallais, A. (2022). Evolution of IoT security: The era of smart attacks. IEEE Internet of Things Magazine, 5(1), 108-113. http://dx.doi.org/10.1109/IOTM.001.2100183 DOI: https://doi.org/10.1109/IOTM.001.2100183
Butun, I., Österberg, P., & Song, H. (2020). Security of the internet of things: Vulnerabilities, attacks, and countermeasures. IEEE Communications Surveys & Tutorials, 22(1), 616-644. https://doi.org/10.1109/COMST.2019.2953364 DOI: https://doi.org/10.1109/COMST.2019.2953364
Cao, K., Ding, H., Wang, B., Lv, L., Tian, J., Wei, Q., & Gong, F. (2022). Enhancing physical-layer security for IoT with nonorthogonal multiple access assisted semi-grant-free transmission. IEEE internet of things journal, 9(24), 24669-24681. https://doi.org/10.1109/JIOT.2022.3193189 DOI: https://doi.org/10.1109/JIOT.2022.3193189
Gokhale, P., Bhat, O., & Bhat, S. (2018). Introduction to IOT. International Advanced Research Journal in Science, Engineering and Technology, 5(1), 41-44.
Hu, Z., Beuran, R., & Tan, Y. (2020). Automated penetration testing using deep reinforcement learning. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 2-10) . IEEE. https://doi.org/10.1109/EuroSPW51379.2020.00010 DOI: https://doi.org/10.1109/EuroSPW51379.2020.00010
Kang, H., Ahn, D. H., Lee, G. M., Do Yoo, J., Park, K. H., & Kim, H. K. (2019, September 27). IoT network intrusion dataset. IEEE Dataport. https://dx.doi.org/10.21227/q70p-q449
Kumar, J. S., & Patel, D. R. (2014). A survey on internet of things: Security and privacy issues. International Journal of Computer Applications, 90(11), 20-26. http://dx.doi.org/10.5120/15764-4454 DOI: https://doi.org/10.5120/15764-4454
Lee, S., & Chung, T. (2005). Data aggregation for wireless sensor networks using self-organizing map. In T. G. Kim (Ed.), Artificial Intelligence and Simulation (Vol. 3397, pp. 508–517). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-30583-5_54 DOI: https://doi.org/10.1007/978-3-540-30583-5_54
Lin, H., & Bergmann, N. W. (2016). IoT privacy and security challenges for smart home environments. Information, 7(3), 44. https://doi.org/10.3390/info7030044 DOI: https://doi.org/10.3390/info7030044
Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE internet of things journal, 4(5), 1125-1142. https://doi.org/10.1109/JIOT.2017.2683200 DOI: https://doi.org/10.1109/JIOT.2017.2683200
Mohassel, P., & Zhang, Y. (2017). SecureML: A system for scalable privacy-preserving machine learning. 2017 IEEE Symposium on Security and Privacy (SP) (pp. 19-38). IEEE. https://doi.org/10.1109/SP.2017.12 DOI: https://doi.org/10.1109/SP.2017.12
Mphale, O., Gorejena, K. N., & Nojila, O. (2024). The future of things: A comprehensive overview of internet of things history, definitions, technologies, architectures, communication and beyond. Journal of Information Systems and Informatics, 6(2), 1263-1286. http://dx.doi.org/10.51519/journalisi.v6i2.738 DOI: https://doi.org/10.51519/journalisi.v6i2.738
Nahar, K. M. O., Al-Hazaimeh, O. M., Abu-Ein, A., & Gharaibeh, N. (2020). Phonocardiogram classification based on machine learning with multiple sound features. Journal of Computer Science, 16(11), 1648-1656. https://doi.org/10.3844/jcssp.2020.1648.1656 DOI: https://doi.org/10.3844/jcssp.2020.1648.1656
Ni, Q., Lobo, J., Calo, S., Rohatgi, P., & Bertino, E. (2009). Automating role-based provisioning by learning from examples. 14th ACM symposium on Access control models and technologies (SACMAT '09) (pp. 75-84). Association for Computing Machinery. http://dx.doi.org/10.1145/1542207.1542222 DOI: https://doi.org/10.1145/1542207.1542222
Outchakoucht, A., Es-Samaali, H., & Leroy, J. P. (2017). Dynamic access control policy based on blockchain and machine learning for the internet of things. International journal of advanced Computer Science and applications, 8(7). http://dx.doi.org/10.14569/IJACSA.2017.080757 DOI: https://doi.org/10.14569/IJACSA.2017.080757
Prince, N. U., Al Mamun, M. A., Olajide, A. O., Khan, O. U., Akeem, A. B., & Sani, A. I. (2024). IEEE standards and deep learning techniques for securing internet of things (IoT) devices against cyber attacks. Journal of Computational Analysis and Applications, 33(7), 1270-1289.
Rooshenas, A., Rabiee, H. R., Movaghar, A., & Naderi, M. Y. (2010). Reducing the data transmission in wireless sensor networks using the principal component analysis. 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (pp. 133-138). IEEE. https://doi.org/10.1109/ISSNIP.2010.5706781 DOI: https://doi.org/10.1109/ISSNIP.2010.5706781
Rouhani, B. D., Riazi, M. S., & Koushanfar, F. (2018). Deepsecure: Scalable provably-secure deep learning. 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE. http://dx.doi.org/10.1109/DAC.2018.8465894 DOI: https://doi.org/10.1109/DAC.2018.8465894
Safitra, M. F., Lubis, M., & Widjajarto, A. (2023). Security vulnerability analysis using penetration testing execution standard (PTES): case study of government's website. 2023 6th International Conference on Electronics, Communications and Control Engineering (ICECC '23) (pp. 139-145). Association for Computing Machinery. http://dx.doi.org/10.1145/3592307.3592329 DOI: https://doi.org/10.1145/3592307.3592329
Santos, A., Macedo, J., Costa, A., & Nicolau, M. J. (2014). Internet of things and smart objects for M-health monitoring and control. Procedia Technology, 16, 1351-1360. https://doi.org/10.1016/j.protcy.2014.10.152 DOI: https://doi.org/10.1016/j.protcy.2014.10.152
Shaikh, F., Bou-Harb, E., Neshenko, N., Wright, A. P., & Ghani, N. (2018). Internet of malicious things: Correlating active and passive measurements for inferring and characterizing internet-scale unsolicited iot devices. IEEE Communications Magazine, 56(9), 170-177. http://dx.doi.org/10.1109/MCOM.2018.1700685 DOI: https://doi.org/10.1109/MCOM.2018.1700685
Shanley, A., & Johnstone, M. N. (2015). Selection of penetration testing methodologies: A comparison and evaluation. 13th Australian Information Security Management Conference (pp. 65-72). Cowan University. https://doi.org/10.4225/75/57b69c4ed938d
Shaqboua, R., Tahat, N., Ababneh, O., & Al-Hazaimeh, O. M. (2022). Chaotic map and quadratic residue problems-based hybrid signature scheme. International Journal for Computers & Their Applications, 29(4), 229-235.
Shaukat, K., Alam, T. M., Hameed, I. A., Khan, W. A., Abbas, N., & Luo, S. (2021). A review on security challenges in internet of things (IoT). 2021 26th international conference on automation and computing (ICAC) (pp. 1-6). IEEE. http://dx.doi.org/10.23919/ICAC50006.2021.9594183 DOI: https://doi.org/10.23919/ICAC50006.2021.9594183
Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership inference attacks against machine learning models. 2017 IEEE Symposium on Security and Privacy (SP) (pp. 3-18). IEEE. https://doi.org/10.1109/SP.2017.41 DOI: https://doi.org/10.1109/SP.2017.41
Su, D., Cao, J., Li, N., Bertino, E., & Jin, H. (2016). Differentially private k-means clustering. Sixth ACM Conference on Data and Application Security and Privacy (CODASPY '16) (pp. 26-37). Association for Computing Machinery. https://doi.org/10.1145/2857705.2857708 DOI: https://doi.org/10.1145/2857705.2857708
Swamy, S. N., Jadhav, D., Kulkarni, N. (2017). Security threats in the application layer in IOT applications. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 477-480). IEEE. http://dx.doi.org/10.1109/I-SMAC.2017.8058395 DOI: https://doi.org/10.1109/I-SMAC.2017.8058395
Tahat, N., Tahat, A. A., Abu-Dalu, M., Albadarneh, R. B., Abdallah, A. E., & Al-Hazaimeh, O. M. (2020). A new RSA public key encryption scheme with chaotic maps. International Journal of Electrical and Computer Engineering, 10(2), 1430-1437. http://doi.org/10.11591/ijece.v10i2.pp1430-1437 DOI: https://doi.org/10.11591/ijece.v10i2.pp1430-1437
Tawalbeh, L., Muheidat, F., Tawalbeh, M., & Quwaider, M. (2020). IoT privacy and security: Challenges and solutions. Applied Sciences, 10(12), 4102. https://doi.org/10.3390/app10124102 DOI: https://doi.org/10.3390/app10124102
Ujjwal, K. C., & Chodorowski, J. (2019). A case study of adding proactivity in indoor social robots using Belief–Desire–Intention (BDI) model. Biomimetics, 4(4), 74. https://doi.org/10.3390/biomimetics4040074 DOI: https://doi.org/10.3390/biomimetics4040074
Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., & Chan, K. (2019). Adaptive federated learning in resource constrained edge computing systems. IEEE Journal on Selected Areas in Communications, 37(6), 1205-1221. http://dx.doi.org/10.1109/JSAC.2019.2904348 DOI: https://doi.org/10.1109/JSAC.2019.2904348
Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2019). In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network, 33(5), 156-165. https://doi.org/10.1109/MNET.2019.1800286 DOI: https://doi.org/10.1109/MNET.2019.1800286
Xiao, L., Li, Y., Han, G., Liu, G., & Zhuang, W. (2016). PHY-layer spoofing detection with reinforcement learning in wireless networks. IEEE Transactions on Vehicular Technology, 65(12), 10037-10047. https://doi.org/10.1109/TVT.2016.2524258 DOI: https://doi.org/10.1109/TVT.2016.2524258
Xu, C., Ren, J., Zhang, D., & Zhang, Y. (2018). Distilling at the edge: A local differential privacy obfuscation framework for IoT data analytics. IEEE Communications Magazine, 56(8), 20-25. http://dx.doi.org/10.1109/MCOM.2018.1701080 DOI: https://doi.org/10.1109/MCOM.2018.1701080
Yalli, J. S., Hasan, M. H., & Badawi, A. A. (2024). Internet of things (IoT): Origin, embedded technologies, smart applications and its growth in the last decade. IEEE access, 12, 91357-91382. http://dx.doi.org/10.1109/ACCESS.2024.3418995 DOI: https://doi.org/10.1109/ACCESS.2024.3418995
Yang, Y., Wu, L., Yin, G., Li, L., & Zhao, H. (2017). A survey on security and privacy issues in Internet-of-Things. IEEE Internet of Things Journal, 4(5), 1250-1258. https://doi.org/10.1109/JIOT.2017.2694844 DOI: https://doi.org/10.1109/JIOT.2017.2694844
Zeinab, K. A. M., & Elmustafa, S. A. A. (2017). Internet of things applications, challenges and related future technologies. World Scientific News, 67(2), 126-148.
Article Details
Abstract views: 187
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
