Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
Parkinson's disease (PD), a type of neurodegenerative disease, is on the rise globally as the population ages. Today's costly diagnostic techniques for Parkinson's disease often detect the illness after significant brain damage has already occurred. Early detection is essential for improving patient outcomes and potentially slowing the disease's progression. One of the newest advances in artificial intelligence, deep learning (DL), presents new opportunities for the early, non-invasive diagnosis of Parkinson's disease. Fundus imaging, which captures fine-grained images of the retina, is a promising technique for detecting the disease's early symptoms. Changes in the retinal blood vessels and anomalies of the optic disc (OD) have been linked to neurodegeneration. DL models can identify subtle patterns in these fundus images, such as vascular alterations and changes in the optic disc, which have been connected to Parkinson's disease. This approach replaces current diagnostic methods with a scalable and cost-effective solution, increasing access to early detection. This review explores the current state of the art in using DL models with fundus images to detect PD early on, with a focus on significant public datasets, methodologies, and related research. It highlights how DL models could transform PD screening and provides an overview of the advancements and challenges in this emerging field.
Keywords:
References
Ahn, S., Shin, J., Song, S. J., Yoon, W. T., Sagong, M., Jeong, A., Kim, J. H., & Yu, H. G. (2023). Neurologic dysfunction assessment in Parkinson disease based on fundus photographs using deep learning. JAMA Ophthalmology, 141(3), 234–240. https://doi.org/10.1001/jamaophthalmol.2022.5928 DOI: https://doi.org/10.1001/jamaophthalmol.2022.5928
Alghamdi, M., & Abdel-Mottaleb, M. (2021). A comparative study of deep learning models for diagnosing glaucoma from fundus images. IEEE Access, 9, 23894–23906. https://doi.org/10.1109/ACCESS.2021.3056641 DOI: https://doi.org/10.1109/ACCESS.2021.3056641
Arslan, J., Racoceanu, D., & Benke, K. K. (2023). Deep learning using images of the retina for assessment of severity of neurological dysfunction in Parkinson disease. JAMA Ophthalmology, 141(3), 240–241. https://doi.org/10.1001/jamaophthalmol.2022.6036 DOI: https://doi.org/10.1001/jamaophthalmol.2022.6036
Aziz, T., Charoenlarpnopparut, C., & Mahapakulchai, S. (2023). Deep learning-based hemorrhage detection for diabetic retinopathy screening. Scientific Reports, 13, 1479. https://doi.org/10.1038/s41598-023-28680-3 DOI: https://doi.org/10.1038/s41598-023-28680-3
Bajwa, M. N., Singh, G. A. P., Neumeier, W., Malik, M. I., Dengel, A., & Ahmed, S. (2020). G1020: A benchmark retinal fundus image dataset for computer-aided glaucoma detection. ArXiv, abs/2006.09158. https://doi.org/10.48550/arXiv.2006.09158 DOI: https://doi.org/10.1109/IJCNN48605.2020.9207664
Chorage, S. S., & Khot, S. S. (2016). A review on vessel extraction of fundus image to detect diabetic retinopathy. Global Journal of Computer Science and Technology: F Graphics & Vision, 16(3).
Dai, L., Wu, L., Li, H., Cai, C., Wu, Q., Kong, H., Liu, R., Wang, X., Hou, X., Liu, Y., Long, X., Wen, Y., Lu, L., Shen, Y., Chen, Y., Shen, D., Yang, X., Zou, H., Sheng, B., & Jia, W. (2021). A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nature Communications, 12, 3242. https://doi.org/10.1038/s41467-021-23458-5 DOI: https://doi.org/10.1038/s41467-021-23458-5
delaPava, M., Ríos, H., Rodríguez, F. J., Perdomo, O. J., & González, F. A. (2021). A deep learning model for classification of diabetic retinopathy in eye fundus images based on retinal lesion detection. ArXiv, abs/2110.07745. https://doi.org/10.48550/arXiv.2110.07745 DOI: https://doi.org/10.1117/12.2606319
Deng, Y., Jie, C., Wang, J., Liu, Z., Li, Y., & Hou, X. (2022). Evaluation of retina and microvascular changes in the patient with Parkinson’s disease: A systematic review and meta-analysis. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.957700 DOI: https://doi.org/10.3389/fmed.2022.957700
Diaz, M., Tian, J., & Fang, R. (2020). Machine learning for Parkinson’s disease diagnosis using fundus eye images. Annual Meeting of Radiology Society of North America (RSNA). https://par.nsf.gov/servlets/purl/10296704
El-Hag, N. A., Sedik, A., El-Shafai, W., El-Hoseny, H. M., Khalaf, A. A. M., El-Fishawy, A. S., Al-Nuaimy, W., Abd El-Samie, F. E., & El-Banby, G. M. (2021). Classification of retinal images based on convolutional neural network. Microscopy Research and Technique, 84(3), 394–414. https://doi.org/10.1002/jemt.23596 DOI: https://doi.org/10.1002/jemt.23596
Escorcia-Gutierrez, J., Cuello, J., Barraza, C., Gamarra, M., Romero-Aroca, P., Caicedo, E., Valls, A., & Puig, D. (2022). Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images. International Conference on Computer Information Systems and Industrial Management (pp. 202–213). Springer-Verlag. https://doi.org/10.1007/978-3-031-10539-5_15 DOI: https://doi.org/10.1007/978-3-031-10539-5_15
Han, J., Wang, Y., & Gong, H. (2022). Fundus retinal vessels image segmentation method based on improved U-Net. IRBM, 43(6), 628–639. https://doi.org/10.1016/j.irbm.2022.03.001 DOI: https://doi.org/10.1016/j.irbm.2022.03.001
Hussain, M., Al-Aqrabi, H., Munawar, M., Hill, R., & Parkinson, S. (2023). Exudate regeneration for automated exudate detection in retinal fundus images. IEEE Access, 11, 83934–83945. https://doi.org/10.1109/ACCESS.2022.3205738 DOI: https://doi.org/10.1109/ACCESS.2022.3205738
Jebaseeli, T. J., Durai, C. A. D., & Peter, J. D. (2019). Segmentation of retinal blood vessels from ophthalmologic Diabetic Retinopathy images. Computers and Electrical Engineering, 73, 245–258. https://doi.org/10.1016/j.compeleceng.2018.11.024 DOI: https://doi.org/10.1016/j.compeleceng.2018.11.024
Józwik, J., Zawada-Michałowska, M., Kulisz, M., Tomiło, P., Barszcz, M., Pieśko, P., Leleń, M., & Cybul, K. (2024). Modeling the optimal measurement time with a probe on the machine tool using machine learning methods. Applied Computer Science, 20(2), 43–59. https://doi.org/10.35784/acs-2024-15 DOI: https://doi.org/10.35784/acs-2024-15
Kako, N. A., & Abdulazeez, A. M. (2022). Peripapillary atrophy segmentation and classification methodologies for glaucoma image detection: A review. Current Medical Imaging, 18(11), 1140–1159. https://doi.org/10.2174/1573405618666220308112732 DOI: https://doi.org/10.2174/1573405618666220308112732
Kako, N. A., Abdulazeez, A. M., & Abdulqader, D. N. (2024). Multi-label deep learning for comprehensive optic nerve head segmentation through data of fundus images. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e36996 DOI: https://doi.org/10.1016/j.heliyon.2024.e36996
Kaur, S., Aggarwal, H., & Rani, R. (2021). Diagnosis of Parkinson’s disease using deep CNN with transfer learning and data augmentation. Multimedia Tools and Applications, 80, 10113–10139. https://doi.org/10.1007/s11042-020-10114-1 DOI: https://doi.org/10.1007/s11042-020-10114-1
Khalil, H., El-Hag, N., Sedik, A., El-Shafie, W., Mohamed, A. E.-N., Khalaf, A. M., El-Fishawy, A. S., El-Banby, G. M., & El-Samie, F. I. A. (2019). Classification of diabetic retinopathy types based on convolution neural network (CNN). 1st International Conference on Electronic Engineering (ICEEM2019) (pp. 126-132). Menoufia University. DOI: https://doi.org/10.21608/mjeer.2019.76962
Kim, G. Y., Lee, S. H., & Kim, S. M. (2021). Automated segmentation and quantitative analysis of optic disc and fovea in fundus images. Multimedia Tools and Applications, 80, 24205–24220. https://doi.org/10.1007/s11042-021-10815-1 DOI: https://doi.org/10.1007/s11042-021-10815-1
Kim, J., Candemir, S., Chew, E. Y., & Thoma, G. R. (2018). Region of interest detection in fundus images using deep learning and blood vessel information. IEEE Symposium on Computer-Based Medical Systems (CBMS) (pp. 357–362). IEEE. https://doi.org/10.1109/CBMS.2018.00069 DOI: https://doi.org/10.1109/CBMS.2018.00069
Li, T., Bo, W., Hu, C., Kang, H., Liu, H., Wang, K., & Fu, H. (2021). Applications of deep learning in fundus images: A review. Medical Image Analysis, 69, 101971. https://doi.org/10.1016/j.media.2021.101971 DOI: https://doi.org/10.1016/j.media.2021.101971
Lu, L., Ren, P., Lu, Q., Zhou, E., Yu, W., Huang, J., He, X., & Han, W. (2021). Analyzing fundus images to detect diabetic retinopathy (DR) using deep learning system in the Yangtze River delta region of China. Annals of Translational Medicine, 9(3), 226–226. https://doi.org/10.21037/atm-20-3275 DOI: https://doi.org/10.21037/atm-20-3275
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of EEMD-DFA algorithms and ANN classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18 DOI: https://doi.org/10.35784/acs-2024-18
Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., & Van Gool, L. (2016). Deep retinal image understanding. 19th International Conference - Medical Image Computing and Computer-Assisted Intervention (MICCAI) (pp. 140-148). Springer-Verlag. https://doi.org/10.1007/978-3-319-46723-8_17 DOI: https://doi.org/10.1007/978-3-319-46723-8_17
Martinez-Perez, M. E., Witt, N., Parker, K. H., Hughes, A. D., & Thom, S. A. M. (2019). Automatic optic disc detection in colour fundus images by means of multispectral analysis and information content. PeerJ, 7, e7119. https://doi.org/10.7717/peerj.7119 DOI: https://doi.org/10.7717/peerj.7119
Mayya, V., S, S. K., Kulkarni, U., Surya, D. K., & Acharya, U. R. (2023). An empirical study of preprocessing techniques with convolutional neural networks for accurate detection of chronic ocular diseases using fundus images. Applied Intelligence, 53, 1548–1566. https://doi.org/10.1007/s10489-022-03490-8 DOI: https://doi.org/10.1007/s10489-022-03490-8
Memari, N., Ramli, A. R., Saripan, M. I. Bin, Mashohor, S., & Moghbel, M. (2019). Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. Journal of Medical and Biological Engineering, 39, 713–731. https://doi.org/10.1007/s40846-018-0454-2 DOI: https://doi.org/10.1007/s40846-018-0454-2
Mohan, D., Kumar, J. R. H., & Seelamantula, C. S. (2018). High-performance optic disc segmentation using convolutional neural networks. 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 4038–4042). IEEE. https://doi.org/10.1109/ICIP.2018.8451543 DOI: https://doi.org/10.1109/ICIP.2018.8451543
Orlando, J. I., Fu, H., Barbosa Breda, J., Van Keer, K., Bathula, D. R., Diaz-Pinto, A., Fang, R., Heng, P.-A., Kim, J., Lee, J., Lee, J., Li, X., Liu, P., Lu, S., Murugesan, B., Naranjo, V., Phaye, S. S. R., Shankaranarayana, S. M., Sikka, A., … Bogunović, H. (2020). REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis, 59, 101570. https://doi.org/10.1016/j.media.2019.101570 DOI: https://doi.org/10.1016/j.media.2019.101570
Paul, G., & Elabi, O. F. (2022). Microvascular changes in Parkinson’s disease- focus on the neurovascular unit. Frontiers in Aging Neuroscience, 14, 853372. https://doi.org/10.3389/fnagi.2022.853372 DOI: https://doi.org/10.3389/fnagi.2022.853372
Paul, S., Maindarkar, M., Saxena, S., Saba, L., Turk, M., Kalra, M., Krishnan, P. R., & Suri, J. S. (2022). Bias investigation in artificial intelligence systems for early detection of Parkinson’s disease: A narrative review. Diagnostics, 12(1), 166. https://doi.org/10.3390/diagnostics12010166 DOI: https://doi.org/10.3390/diagnostics12010166
Pitchumani Angayarkanni, S., & Kolengadan, J. P. (2024). Deep learning to identify Parkinson’s disease biomarkers in age-related macular degeneration fundus image. 3rd International Conference on Image Processing and Robotics (ICIPRoB) (pp. 1-6). https://doi.org/10.1109/ICIPRoB62548.2024.10543763 DOI: https://doi.org/10.1109/ICIPRoB62548.2024.10543763
Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., & Meriaudeau, F. (2018). Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening research. https://doi.org/10.21227/H25W98 DOI: https://doi.org/10.3390/data3030025
Pradhan, A., Sarma, B., Nath, R. K., Das, A., & Chakraborty, A. (2020). Diabetic retinopathy detection on retinal fundus images using convolutional neural network. In A. Bhattacharjee, S. Kr. Borgohain, B. Soni, G. Verma, & X.-Z. Gao (Eds.), Machine Learning, Image Processing, Network Security and Data Sciences (Vol. 1240, pp. 254–266). Springer Singapore. https://doi.org/10.1007/978-981-15-6315-7_21 DOI: https://doi.org/10.1007/978-981-15-6315-7_21
Richardson, A., Kundu, A., Henao, R., Lee, T., Scott, B. L., Grewal, D. S., & Fekrat, S. (2024). Multimodal retinal imaging classification for Parkinson’s disease using a convolutional neural network. Translational Vision Science and Technology, 13(8), 23. https://doi.org/10.1167/tvst.13.8.23 DOI: https://doi.org/10.1167/tvst.13.8.23
Robbins, C. B., Thompson, A. C., Bhullar, P. K., Koo, H. Y., Agrawal, R., Soundararajan, S., Yoon, S. P., Polascik, B. W., Scott, B. L., Grewal, D. S., & Fekrat, S. (2021). Characterization of retinal microvascular and choroidal structural changes in Parkinson disease. JAMA Ophthalmology, 139(2), 182–188. https://doi.org/10.1001/jamaophthalmol.2020.5730 DOI: https://doi.org/10.1001/jamaophthalmol.2020.5730
Ruamviboonsuk, P., Kaothanthong, N., Theeramunkong, T., & Ruamviboonsuk, V. (2021). Overview of artificial intelligence systems in ophthalmology. In A. Grzybowski (Ed.), Artificial Intelligence in Ophthalmology (pp. 31–53). Springer International Publishing. https://doi.org/10.1007/978-3-030-78601-4_3 DOI: https://doi.org/10.1007/978-3-030-78601-4_3
Rumman, M., Tasneem, A. N., Farzana, S., Pavel, M. I., & Alam, M. A. (2018). Early detection of Parkinson’s disease using image processing and artificial neural network. 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR) (pp. 256-261). IEEE. https://doi.org/10.1109/ICIEV.2018.8641081 DOI: https://doi.org/10.1109/ICIEV.2018.8641081
Shah, S. A. A., Shahzad, A., Alhussein, M., Goh, C. M., Aurangzeb, K., Tang, T. B., & Awais, M. (2024). An implementation of multiscale line detection and mathematical morphology for efficient and precise blood vessel segmentation in fundus images. Computers, Materials & Continua, 79(2), 2565–2583. https://doi.org/10.32604/cmc.2024.047597 DOI: https://doi.org/10.32604/cmc.2024.047597
Shin, D. H., Heo, H., Song, S., Shin, N. Y., Nam, Y., Yoo, S. W., Kim, J. S., Yoon, J. H., Lee, S. H., Sung, Y. H., & Kim, E. Y. (2021). Automated assessment of the substantia nigra on susceptibility map-weighted imaging using deep convolutional neural networks for diagnosis of Idiopathic Parkinson’s disease. Parkinsonism and Related Disorders, 85, 84–90. https://doi.org/10.1016/j.parkreldis.2021.03.004 DOI: https://doi.org/10.1016/j.parkreldis.2021.03.004
Shoukat, A., Akbar, S., Hassan, S. A. E., Rehman, A., & Ayesha, N. (2021). An automated deep learning approach to diagnose glaucoma using retinal fundus images. 2021 International Conference on Frontiers of Information Technology (FIT) (pp. 120–125). IEEE. http://dx.doi.org/10.1109/FIT53504.2021.00031 DOI: https://doi.org/10.1109/FIT53504.2021.00031
Subramaniam, M. D., Aishwarya Janaki, P., Abishek Kumar, B., Gopalarethinam, J., Nair, A. P., Mahalaxmi, I., & Vellingiri, B. (2023). Retinal changes in Parkinson’s disease: A non-invasive biomarker for early diagnosis. Cellular and Molecular Neurobiology, 43(8), 3983–3996. https://doi.org/10.1007/s10571-023-01419-4 DOI: https://doi.org/10.1007/s10571-023-01419-4
Sun, G., Wang, X., Xu, L., Li, C., Wang, W., Yi, Z., Luo, H., Su, Y., Zheng, J., Li, Z., Chen, Z., Zheng, H., & Chen, C. (2023). Deep learning for the detection of multiple fundus diseases using ultra-widefield Images. Ophthalmology and Therapy, 12, 895–907. https://doi.org/10.1007/s40123-022-00627-3 DOI: https://doi.org/10.1007/s40123-022-00627-3
Sun, Y., Li, Y., Zhang, F., Zhao, H., Liu, H., Wang, N., & Li, H. (2023). A deep network using coarse clinical prior for myopic maculopathy grading. Computers in Biology and Medicine, 154, 106556. https://doi.org/10.1016/j.compbiomed.2023.106556 DOI: https://doi.org/10.1016/j.compbiomed.2023.106556
Tolosa, S., Scholz, W., Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Parkinson’s disease. The Lancet Neurology, 20(5), 385-397. https://doi.org/10.1016/S1474-4422(21)00030-2 DOI: https://doi.org/10.1016/S1474-4422(21)00030-2
Tran, C., Shen, K., Liu, K., Ashok, A., Ramirez-Zamora, A., Chen, J., Li, Y., & Fang, R. (2024). Deep learning predicts prevalent and incident Parkinson’s disease from UK Biobank fundus imaging. Scientific Reports, 14. 3637. https://doi.org/10.1038/s41598-024-54251-1 DOI: https://doi.org/10.1038/s41598-024-54251-1
Tugcu, B., Melikov, A., Yildiz, G. B., Gökcal, E., Ercan, R., Uysal, O., & Ozdemir, H. (2020). Evaluation of retinal alterations in Parkinson disease and tremor diseases. Acta Neurologica Belgica, 120, 107–113. https://doi.org/10.1007/s13760-019-01228-x DOI: https://doi.org/10.1007/s13760-019-01228-x
Valmarska, A. (2020). Data mining and decision support techniques for patients’ treatment management: A case of Parkinson’s disease. 2020 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 1-3). IEEE. https://doi.org/10.1109/ICHI48887.2020.9374329 DOI: https://doi.org/10.1109/ICHI48887.2020.9374329
van Leeuwen, R. (2003). Age-related macular disease: Studies on incidence, risk factors, and prognosis. Doctoral dissertation.
Wang, R., Tan, Y., Zhong, Z., Rao, S., Zhou, Z., Zhang, L., Zhang, C., Chen, W., Ruan, L., & Sun, X. (2024). Deep learning-based vascular aging prediction from retinal fundus images. Translational Vision Science and Technology, 13(7), 10. https://doi.org/10.1167/tvst.13.7.10 DOI: https://doi.org/10.1167/tvst.13.7.10
Wang, X., Jiang, X., & Ren, J. (2019). Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognition, 88, 331–341. https://doi.org/10.1016/j.patcog.2018.11.030 DOI: https://doi.org/10.1016/j.patcog.2018.11.030
Yoga Sri Varshan, V., Sahayam, S., & Jayaraman, U. (2023). An Algorithm to calculate retinal vessel diameter in fundus images. ACM international conference proceeding series. Fourteenth Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP '23) (pp. 1-9). Association for Computing Machinery. https://doi.org/10.1145/3627631.3627653 DOI: https://doi.org/10.1145/3627631.3627653
Zhang, Q., Li, J., Bian, M., He, Q., Shen, Y., Lan, Y., & Huang, D. (2021). Retinal imaging techniques based on machine learning models in recognition and prediction of mild cognitive impairment. Neuropsychiatric Disease and Treatment, 17, 3267–3281. https://doi.org/10.2147/NDT.S333833 DOI: https://doi.org/10.2147/NDT.S333833
Zhou, Y., Wagner, S. K., Chia, M. A., Zhao, A., Woodward-Court, P., Xu, M., Struyven, R., Alexander, D. C., & Keane, P. A. (2022). AutoMorph: Automated retinal vascular morphology quantification via a deep learning pipeline. Translational Vision Science and Technology, 11(7), 12. https://doi.org/10.1167/tvst.11.7.12 DOI: https://doi.org/10.1167/tvst.11.7.12
Article Details
Abstract views: 42
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.