Aalimahmoody, N., Bedon, C., Hasanzadeh-Inanlou, N., Hasanzade-Inallu, A., & Nikoo, M. (2021). Bat algorithm-based ann to predict the compressive strength of concrete—a comparative study. Infrastructures, 6(6), 1–17. https://doi.org/10.3390/infrastructures6060080
DOI: https://doi.org/10.3390/infrastructures6060080
Abed Mohammed, A., Sumari, P., & Attabi, K. (2024). Hybrid K-means and principal component analysis (PCA) for diabetes prediction. International Journal of Computing and Digital Systems, 15(1), 1719–1728. https://doi.org/10.12785/ijcds/1501121
DOI: https://doi.org/10.12785/ijcds/1501121
Al Bataineh, A., Kaur, D., & Jalali, S. M. J. (2022). Multi-layer perceptron training optimization using nature inspired computing. IEEE Access, 10, 36963–36977. https://doi.org/10.1109/ACCESS.2022.3164669
DOI: https://doi.org/10.1109/ACCESS.2022.3164669
Amma, N. G. B. (2024). En-RfRsK: An ensemble machine learning technique for prognostication of diabetes mellitus. Egyptian Informatics Journal, 25, 100441. https://doi.org/10.1016/j.eij.2024.100441
DOI: https://doi.org/10.1016/j.eij.2024.100441
Bhat, S. S., Selvam, V., Ansari, G. A., Ansari, M. D., & Rahman, M. H. (2022). Prevalence and early prediction of diabetes using machine learning in north Kashmir: A case study of district bandipora. Computational Intelligence and Neuroscience, 2022(1), 2789760. https://doi.org/10.1155/2022/2789760
DOI: https://doi.org/10.1155/2022/2789760
Chaves, L., & Marques, G. (2021). Data mining techniques for early diagnosis of diabetes: A comparative study. Applied Sciences, 11(5), 2218. https://doi.org/10.3390/app11052218
DOI: https://doi.org/10.3390/app11052218
Chiroma, H., Khan, A., Abubakar, A. I., Saadi, Y., Hamza, M. F., Shuib, L., Gital, A. Y., & Herawan, T. (2016). A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Applied Soft Computing Journal, 48, 50–58. https://doi.org/10.1016/j.asoc.2016.06.038
DOI: https://doi.org/10.1016/j.asoc.2016.06.038
Emon, M. U., Keya, M. S., Kaiser, M. S., Islam, M. A., Tanha, T., & Zulfiker, M. S. (2021). Primary stage of diabetes prediction using machine learning approaches. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp. 364–367). IEEE. https://doi.org/10.1109/ICAIS50930.2021.9395968
DOI: https://doi.org/10.1109/ICAIS50930.2021.9395968
International Diabetes Federation. (2024). Diabetes around the world in 2021. https://idf.org/about-diabetes/diabetes-facts-figures/
Islam, M. M. F., Ferdousi, R., Rahman, S., & Bushra, H. Y. (2020). Likelihood prediction of diabetes at early stage using data mining techniques. In M. Gupta, D. Konar, S. Bhattacharyya, & S. Biswas (Eds.), Computer Vision and Machine Intelligence in Medical Image Analysis (Vol. 992, pp. 113–125). Springer Singapore. https://doi.org/10.1007/978-981-13-8798-2_12
DOI: https://doi.org/10.1007/978-981-13-8798-2_12
Islam, M. S., Minul Alam, M., Ahamed, A., & Ali Meerza, S. I. (2023). Prediction of diabetes at early stage using interpretable machine learning. SoutheastCon 2023 (pp. 261–265). IEEE. https://doi.org/10.1109/SoutheastCon51012.2023.10115152
DOI: https://doi.org/10.1109/SoutheastCon51012.2023.10115152
Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14
DOI: https://doi.org/10.35784/acs-2022-14
Kujawska, J., Kulisz, M., Oleszczuk, P., & Cel, W. (2022). Machine learning methods to forecast the concentration of PM10 in Lublin, Poland. Energies, 15(17), 6428. https://doi.org/10.3390/en15176428
DOI: https://doi.org/10.3390/en15176428
Kulisz, M., Kujawska, J., Przysucha, B., & Cel, W. (2021). Forecasting water quality index in groundwater using artificial neural network. Energies, 14(18), 5875. https://doi.org/10.3390/en14185875
DOI: https://doi.org/10.3390/en14185875
Lin, H., Chen, Z., Wu, L., Lin, P., & Cheng, S. (2015). On-line monitoring and fault diagnosis of PV array based on BP neural network optimised by genetic algorithm. In B. A & Z. X (Eds.), Multi-disciplinary Trends in Artificial Intelligence (Vol. 9426, pp. 102–112). Springer, Cham. https://doi.org/10.1007/978-3-319-26181-2_10
DOI: https://doi.org/10.1007/978-3-319-26181-2_10
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024a). Application of eemd-dfa algorithms and ann classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18
DOI: https://doi.org/10.35784/acs-2024-18
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., Krakowski, P., & Syta, A. (2024b). Application of recurrence quantification analysis in the detection of osteoarthritis of the knee with the use of vibroarthrography. Advances in Science and Technology Research Journal, 18(5), 19–31. https://doi.org/10.12913/22998624/189512
DOI: https://doi.org/10.12913/22998624/189512
Mahesh, T. R., Vinoth, K. V., Dhlip, K. V., Geman, O., Margala, M., & Guduri, M. (2023). The stratified K-folds cross-validation and class-balancing methods with high-performance ensemble classifiers for breast cancer classification. Healthcare Analytics, 4, 100247. https://doi.org/10.1016/j.health.2023.100247
DOI: https://doi.org/10.1016/j.health.2023.100247
Mediakom, R. (2024). Saatnya Mengatur Si Manis. Sehat Negeriku - Biro Komunikasi & Pelayanan Publik Kementerian Kesehatan RI. https://sehatnegeriku.kemkes.go.id/baca/blog/20240110/5344736/saatnya-mengatur-si-manis/
Nissar, I., Mir, W. A., Shaikh, T. A., Areen, T., Kashif, M., Khiani, S., & Hussain, A. (2024). An intelligent healthcare system for automated diabetes diagnosis and prediction using machine learning. Procedia Computer Science, 235, 2476–2485. https://doi.org/10.1016/j.procs.2024.04.233
DOI: https://doi.org/10.1016/j.procs.2024.04.233
Oladimeji, O. O., Oladimeji, A., & Oladimeji, O. (2024). Classification models for likelihood prediction of diabetes at early stage using feature selection. Applied Computing and Informatics, 20(3/4), 279–286. https://doi.org/10.1108/ACI-01-2021-0022
DOI: https://doi.org/10.1108/ACI-01-2021-0022
Polly, Y. T. (2022). Model pembelajaran quadratic interpolation flower pollination neural network studi kasus identifikasi penyakit babi [Gadjah Mada]. http://etd.repository.ugm.ac.id/penelitian/detail/218587
Polly, Y. T., Hartati, S., -, S., & Sumiarto, B. (2023). A novel approach to multi-layer-perceptron training using quadratic interpolation flower pollination neural network on non-binary datasets. International Journal of Advanced Computer Science and Applications, 14(6), 497–504. https://doi.org/10.14569/IJACSA.2023.0140653
DOI: https://doi.org/10.14569/IJACSA.2023.0140653
Polly, Y. T., Hartati, S., Suprapto, & Sumiarto, B. (2021). Modified flower pollination algorithm for disease identification in swine. International Journal of Intelligent Engineering and Systems, 14(6), 616–628. https://doi.org/10.22266/ijies2021.1231.55
DOI: https://doi.org/10.22266/ijies2021.1231.55
Prusty, S., Patnaik, S., & Dash, S. K. (2022). SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Frontiers in Nanotechnology, 4. https://doi.org/10.3389/fnano.2022.972421
DOI: https://doi.org/10.3389/fnano.2022.972421
Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. ArXiv, abs/1811.12808. https://doi.org/10.48550/arXiv.1811.12808
Shaik, R., & Siddique, I. (2024). Novel multi-modal obstruction module for diabetes mellitus classification using explainable machine learning. Applied Computer Science, 20(4), 39–62. https://doi.org/10.35784/acs-2024-39
DOI: https://doi.org/10.35784/acs-2024-39
UCI. (2020). Early Stage Diabetes Risk Prediction [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5VG8H
Yang, X.-S. (2012). Flower pollination algorithm for global optimization. In J. Durand-Lose & N. Jonoska (Eds.), Unconventional Computation and Natural Computation (Vol. 7445, pp. 240–249). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27
DOI: https://doi.org/10.1007/978-3-642-32894-7_27
Yang, X.-S. (2014). Nature-Inspired Optimisation Algorithms. Elsevier Inc. https://doi.org/10.1016/B978-0-12-416743-8.00001-4
DOI: https://doi.org/10.1016/B978-0-12-416743-8.00005-1
Yang, X.-S. (2020). Nature-Inspired Optimisation Algorithms (Second). Academic.