A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
yuliantopolly@staf.undana.ac.id
adrianafanggidae@staf.undana.ac.id
clarissaelfira@staf.undana.ac.id
bertha.djahi@staf.undana.ac.id
Abstract
This study aims to evaluate and compare five algorithms in diabetes detection, namely Flower Pollination Neural Network (FPNN), Particle Swarm Optimization Neural Network (PSONN), Bat Artificial Neural Network (BANN), Stochastic Gradient Descent (SGD), and Quadratic Interpolation Flower Pollination Neural Network (QIFPNN). These algorithms were tested on a diabetes risk dataset divided into training, validation, and testing subsets. The evaluation was based on three main aspects: accuracy, F1 score, and training time. Experimental results showed that QIFPNN outperformed others with an average accuracy of 97.90% and an F1 score of 98.30%, although it required the longest training time (4107.89 seconds). FPNN and BANN achieved competitive accuracy (97.34% and 97.43%) and F1 scores (97.84% and 97.91%), while SGD offered a favorable trade-off with accuracy of 96.87%, F1 score of 97.42%, and the shortest training time (584.50 seconds). PSONN performed less well with an average accuracy of 89.26% and an F1 score of 91.45%. These results indicate that QIFPNN can be relied upon as an effective diabetes risk detection model with superior predictive performance. Although the training time of QIFPNN is longer due to its sophisticated optimization process, this is only a concern during model development, as the final trained model can be efficiently used for real-time prediction in practical applications.
Keywords:
References
Aalimahmoody, N., Bedon, C., Hasanzadeh-Inanlou, N., Hasanzade-Inallu, A., & Nikoo, M. (2021). Bat algorithm-based ann to predict the compressive strength of concrete—a comparative study. Infrastructures, 6(6), 1–17. https://doi.org/10.3390/infrastructures6060080 DOI: https://doi.org/10.3390/infrastructures6060080
Abed Mohammed, A., Sumari, P., & Attabi, K. (2024). Hybrid K-means and principal component analysis (PCA) for diabetes prediction. International Journal of Computing and Digital Systems, 15(1), 1719–1728. https://doi.org/10.12785/ijcds/1501121 DOI: https://doi.org/10.12785/ijcds/1501121
Al Bataineh, A., Kaur, D., & Jalali, S. M. J. (2022). Multi-layer perceptron training optimization using nature inspired computing. IEEE Access, 10, 36963–36977. https://doi.org/10.1109/ACCESS.2022.3164669 DOI: https://doi.org/10.1109/ACCESS.2022.3164669
Amma, N. G. B. (2024). En-RfRsK: An ensemble machine learning technique for prognostication of diabetes mellitus. Egyptian Informatics Journal, 25, 100441. https://doi.org/10.1016/j.eij.2024.100441 DOI: https://doi.org/10.1016/j.eij.2024.100441
Bhat, S. S., Selvam, V., Ansari, G. A., Ansari, M. D., & Rahman, M. H. (2022). Prevalence and early prediction of diabetes using machine learning in north Kashmir: A case study of district bandipora. Computational Intelligence and Neuroscience, 2022(1), 2789760. https://doi.org/10.1155/2022/2789760 DOI: https://doi.org/10.1155/2022/2789760
Chaves, L., & Marques, G. (2021). Data mining techniques for early diagnosis of diabetes: A comparative study. Applied Sciences, 11(5), 2218. https://doi.org/10.3390/app11052218 DOI: https://doi.org/10.3390/app11052218
Chiroma, H., Khan, A., Abubakar, A. I., Saadi, Y., Hamza, M. F., Shuib, L., Gital, A. Y., & Herawan, T. (2016). A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Applied Soft Computing Journal, 48, 50–58. https://doi.org/10.1016/j.asoc.2016.06.038 DOI: https://doi.org/10.1016/j.asoc.2016.06.038
Emon, M. U., Keya, M. S., Kaiser, M. S., Islam, M. A., Tanha, T., & Zulfiker, M. S. (2021). Primary stage of diabetes prediction using machine learning approaches. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp. 364–367). IEEE. https://doi.org/10.1109/ICAIS50930.2021.9395968 DOI: https://doi.org/10.1109/ICAIS50930.2021.9395968
International Diabetes Federation. (2024). Diabetes around the world in 2021. https://idf.org/about-diabetes/diabetes-facts-figures/
Islam, M. M. F., Ferdousi, R., Rahman, S., & Bushra, H. Y. (2020). Likelihood prediction of diabetes at early stage using data mining techniques. In M. Gupta, D. Konar, S. Bhattacharyya, & S. Biswas (Eds.), Computer Vision and Machine Intelligence in Medical Image Analysis (Vol. 992, pp. 113–125). Springer Singapore. https://doi.org/10.1007/978-981-13-8798-2_12 DOI: https://doi.org/10.1007/978-981-13-8798-2_12
Islam, M. S., Minul Alam, M., Ahamed, A., & Ali Meerza, S. I. (2023). Prediction of diabetes at early stage using interpretable machine learning. SoutheastCon 2023 (pp. 261–265). IEEE. https://doi.org/10.1109/SoutheastCon51012.2023.10115152 DOI: https://doi.org/10.1109/SoutheastCon51012.2023.10115152
Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14 DOI: https://doi.org/10.35784/acs-2022-14
Kujawska, J., Kulisz, M., Oleszczuk, P., & Cel, W. (2022). Machine learning methods to forecast the concentration of PM10 in Lublin, Poland. Energies, 15(17), 6428. https://doi.org/10.3390/en15176428 DOI: https://doi.org/10.3390/en15176428
Kulisz, M., Kujawska, J., Przysucha, B., & Cel, W. (2021). Forecasting water quality index in groundwater using artificial neural network. Energies, 14(18), 5875. https://doi.org/10.3390/en14185875 DOI: https://doi.org/10.3390/en14185875
Lin, H., Chen, Z., Wu, L., Lin, P., & Cheng, S. (2015). On-line monitoring and fault diagnosis of PV array based on BP neural network optimised by genetic algorithm. In B. A & Z. X (Eds.), Multi-disciplinary Trends in Artificial Intelligence (Vol. 9426, pp. 102–112). Springer, Cham. https://doi.org/10.1007/978-3-319-26181-2_10 DOI: https://doi.org/10.1007/978-3-319-26181-2_10
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024a). Application of eemd-dfa algorithms and ann classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18 DOI: https://doi.org/10.35784/acs-2024-18
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., Krakowski, P., & Syta, A. (2024b). Application of recurrence quantification analysis in the detection of osteoarthritis of the knee with the use of vibroarthrography. Advances in Science and Technology Research Journal, 18(5), 19–31. https://doi.org/10.12913/22998624/189512 DOI: https://doi.org/10.12913/22998624/189512
Mahesh, T. R., Vinoth, K. V., Dhlip, K. V., Geman, O., Margala, M., & Guduri, M. (2023). The stratified K-folds cross-validation and class-balancing methods with high-performance ensemble classifiers for breast cancer classification. Healthcare Analytics, 4, 100247. https://doi.org/10.1016/j.health.2023.100247 DOI: https://doi.org/10.1016/j.health.2023.100247
Mediakom, R. (2024). Saatnya Mengatur Si Manis. Sehat Negeriku - Biro Komunikasi & Pelayanan Publik Kementerian Kesehatan RI. https://sehatnegeriku.kemkes.go.id/baca/blog/20240110/5344736/saatnya-mengatur-si-manis/
Nissar, I., Mir, W. A., Shaikh, T. A., Areen, T., Kashif, M., Khiani, S., & Hussain, A. (2024). An intelligent healthcare system for automated diabetes diagnosis and prediction using machine learning. Procedia Computer Science, 235, 2476–2485. https://doi.org/10.1016/j.procs.2024.04.233 DOI: https://doi.org/10.1016/j.procs.2024.04.233
Oladimeji, O. O., Oladimeji, A., & Oladimeji, O. (2024). Classification models for likelihood prediction of diabetes at early stage using feature selection. Applied Computing and Informatics, 20(3/4), 279–286. https://doi.org/10.1108/ACI-01-2021-0022 DOI: https://doi.org/10.1108/ACI-01-2021-0022
Polly, Y. T. (2022). Model pembelajaran quadratic interpolation flower pollination neural network studi kasus identifikasi penyakit babi [Gadjah Mada]. http://etd.repository.ugm.ac.id/penelitian/detail/218587
Polly, Y. T., Hartati, S., -, S., & Sumiarto, B. (2023). A novel approach to multi-layer-perceptron training using quadratic interpolation flower pollination neural network on non-binary datasets. International Journal of Advanced Computer Science and Applications, 14(6), 497–504. https://doi.org/10.14569/IJACSA.2023.0140653 DOI: https://doi.org/10.14569/IJACSA.2023.0140653
Polly, Y. T., Hartati, S., Suprapto, & Sumiarto, B. (2021). Modified flower pollination algorithm for disease identification in swine. International Journal of Intelligent Engineering and Systems, 14(6), 616–628. https://doi.org/10.22266/ijies2021.1231.55 DOI: https://doi.org/10.22266/ijies2021.1231.55
Prusty, S., Patnaik, S., & Dash, S. K. (2022). SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Frontiers in Nanotechnology, 4. https://doi.org/10.3389/fnano.2022.972421 DOI: https://doi.org/10.3389/fnano.2022.972421
Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. ArXiv, abs/1811.12808. https://doi.org/10.48550/arXiv.1811.12808
Shaik, R., & Siddique, I. (2024). Novel multi-modal obstruction module for diabetes mellitus classification using explainable machine learning. Applied Computer Science, 20(4), 39–62. https://doi.org/10.35784/acs-2024-39 DOI: https://doi.org/10.35784/acs-2024-39
UCI. (2020). Early Stage Diabetes Risk Prediction [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C5VG8H
Yang, X.-S. (2012). Flower pollination algorithm for global optimization. In J. Durand-Lose & N. Jonoska (Eds.), Unconventional Computation and Natural Computation (Vol. 7445, pp. 240–249). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27 DOI: https://doi.org/10.1007/978-3-642-32894-7_27
Yang, X.-S. (2014). Nature-Inspired Optimisation Algorithms. Elsevier Inc. https://doi.org/10.1016/B978-0-12-416743-8.00001-4 DOI: https://doi.org/10.1016/B978-0-12-416743-8.00005-1
Yang, X.-S. (2020). Nature-Inspired Optimisation Algorithms (Second). Academic.
Article Details
Abstract views: 190
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
