Abro, A. A., Talpur, M. S. H., & Jumani, A. K. (2023). Natural language processing challenges and issues: A literature review. Gazi University Journal of Science, 36(4), 1522-1536. https://doi.org/10.35378/gujs.1032517
DOI: https://doi.org/10.35378/gujs.1032517
Bonta, V., Kumaresh, N., & Naulegari, J. (2019). A comprehensive study on lexicon based approaches for sentiment analysis. Asian Journal of Computer Science and Technology, 8(S2),1-6. https://doi.org/10.51983/ajcst-2019.8.S2.2037
DOI: https://doi.org/10.51983/ajcst-2019.8.S2.2037
Chachal, A., & Gulia, P. (2019). Machine Learning and Deep Learning. International Journal of Innovative Technology and Exploring Engineering, 8(12), 2278-3075. http://dx.doi.org/10.35940/ijitee.L3550.1081219
DOI: https://doi.org/10.35940/ijitee.L3550.1081219
Hussein, D. M. E. M. (2018). A survey on sentiment analysis challenges. Journal of King Saud University-Engineering Sciences, 30(4), 330-338. https://doi.org/10.1016/j.jksues.2016.04.002
DOI: https://doi.org/10.1016/j.jksues.2016.04.002
Kaur, F., & Bhatia, R. (2016). Sentiment analyzing by dictionary based approach. International Journal of Computer Applications, 152(5), 32-34. https://doi.org/10.5120/ijca2016911814
DOI: https://doi.org/10.5120/ijca2016911814
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82, 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
DOI: https://doi.org/10.1007/s11042-022-13428-4
Liu, B. (2012) Sentiment Analysis and Opinion Mining. Morgan & Claypool.
DOI: https://doi.org/10.1007/978-3-031-02145-9
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. https://doi.org/10.1016/j.asej.2014.04.011
DOI: https://doi.org/10.1016/j.asej.2014.04.011
Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11, 81. https://doi.org/10.1007/s13278-021-00776-6
DOI: https://doi.org/10.1007/s13278-021-00776-6
Peretz, O., Koren, M., & Koren, O. (2024). Naive Bayes classifier – An ensemble procedure for recall and precision enrichment. Engineering Applications of Artificial Intelligence, 136(Part B), 108972. https://doi.org/10.1016/j.engappai.2024.108972
DOI: https://doi.org/10.1016/j.engappai.2024.108972
Raiaan, M. A. K, Mukta, S. H., Fatema, K., Fahad, N. M., Sakib, S., & Mim, M. M. J. (2024). A review on large language models: Architectures, applications, taxonomies, open issues and challenges. IEEE Access, 12, 26839-26874. https://doi.org/10.1109/ACCESS.2024.3365742
DOI: https://doi.org/10.1109/ACCESS.2024.3365742
Rish, I. (2001). An empirical study of the naïve bayes classifier. IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 41-46.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/COLI_a_00049
DOI: https://doi.org/10.1162/COLI_a_00049
Umarani, V., Juliana, A., & Deepa, J. (2021). Sentiment analysis using various machine learning and deep learning techniques. Journal of the Nigerian Society of Phisical Sciences, 3(4), 385-394. https://doi.org/10.46481/jnsps.2021.308
DOI: https://doi.org/10.46481/jnsps.2021.308
Wankhade, M., Rao, A. C. S., & Kulkarni C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55, 5731–5780. https://doi.org/10.1007/s10462-022-10144-1
DOI: https://doi.org/10.1007/s10462-022-10144-1
Xu, G., Yu, Z., Yao, H., Li, F., Meng, Y., & Wu, X. (2019). Chinese text sentiment analysis based on extended sentiment dictionary. IEEE Access, 7, 43749-43762. https://doi.org/10.1109/ACCESS.2019.2907772
DOI: https://doi.org/10.1109/ACCESS.2019.2907772