Effectiveness of large language models and software libraries in sentiment analysis
Article Sidebar
Open full text
Issue Vol. 21 No. 2 (2025)
-
Integrating path planning and task scheduling in autonomous drone operations
Ahmed KAMIL, Basim MAHMOOD1-17
-
Machine learning in big data: A performance benchmarking study of Flink-ML and Spark MLlib
Messaoud MEZATI, Ines AOURIA18-27
-
Buckling of a structure made of a new eco-composite material
Jarosław GAWRYLUK, Karolina GŁOGOWSKA, Hubert BARTNICKI28-36
-
Deep learning for early Parkinson's detection: A review of fundus imaging approaches
Zheen ALI, Najdavan KAKO37-50
-
Digital solutions for risk management in sustainable development conditions of business ecosystems
Oleksii HNIEZDOVSKYI, Danylo DOMASHENKO, Svitlana DOMASHENKO, Denys MOROZOV, Serhii SHYLO51-62
-
A new approach for diabetes risk detection using quadratic interpolation flower pollination neural network
Yulianto Triwahyuadi POLLY, Adriana FANGGIDAE, Juan Rizky Mannuel LEDOH, Clarissa Elfira AMOS PAH, Bertha S. DJAHI, Kisan Emiliano Rape TUPEN63-81
-
Predictive modeling of telemedicine implementation in central Asia using neural networks
Zhannur ABDRAKHMANOVA, Talgat DEMESSINOV, Kadisha JAPAROVA, Monika KULISZ, Gulzhan BAYTIKENOVA, Ainur KARIPOVA , Zhansaya ERSAINOVA82-95
-
Enhanced IoT cybersecurity through Machine Learning - based penetration testing
Mohammed J. BAWANEH, Obaida M. AL-HAZAIMEH, Malek M. AL-NAWASHI , Monther H. AL-BSOOL, Essam HANANDAH96-110
-
A two phase ensembled deep learning approach of prominent gene extraction and disease risk prediction
Prajna Paramita DEBATA, Alakananda TRIPATHY, Pournamasi PARHI, Smruti Rekha DAS111-127
-
Effectiveness of large language models and software libraries in sentiment analysis
Agnieszka WOJDECKA, Jakub GROMADZIŃSKI, Krzysztof WALCZAK128-138
-
A comprehensive review of deepfakes in medical imaging: Ethical concerns, detection techniques and future directions
Pradepan P, Gladston Raj S, Juby George K139-153
-
Appling Power BI for improved retail business analytics and decision-making
Huu DANG QUOC154-163
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
jakub.gromadzinski@ue.poznan.pl
krzysztof.walczak@ue.poznan.pl
Abstract
This paper investigates the effectiveness of selected tools for sentiment analysis, focusing on both dedicated software libraries (NLTK, Pattern, TextBlob) and large language models (ChatGPT and Gemini). The evaluation was conducted in two stages: sentiment analysis of 30 synthetic opinions of varying linguistic complexity, and analysis of 5 sets of real user reviews collected from the web. The results show that large language models - although not explicitly designed for sentiment analysis - achieved the highest accuracy, with ChatGPT consistently producing the lowest deviation from human ratings. In contrast, software libraries showed greater variation, especially in the presence of complex linguistic structures. These findings highlight the potential of large language models in sentiment analysis tasks and underscore their robustness in interpreting nuanced language.
Keywords:
References
Abro, A. A., Talpur, M. S. H., & Jumani, A. K. (2023). Natural language processing challenges and issues: A literature review. Gazi University Journal of Science, 36(4), 1522-1536. https://doi.org/10.35378/gujs.1032517 DOI: https://doi.org/10.35378/gujs.1032517
Bonta, V., Kumaresh, N., & Naulegari, J. (2019). A comprehensive study on lexicon based approaches for sentiment analysis. Asian Journal of Computer Science and Technology, 8(S2),1-6. https://doi.org/10.51983/ajcst-2019.8.S2.2037 DOI: https://doi.org/10.51983/ajcst-2019.8.S2.2037
Chachal, A., & Gulia, P. (2019). Machine Learning and Deep Learning. International Journal of Innovative Technology and Exploring Engineering, 8(12), 2278-3075. http://dx.doi.org/10.35940/ijitee.L3550.1081219 DOI: https://doi.org/10.35940/ijitee.L3550.1081219
Hussein, D. M. E. M. (2018). A survey on sentiment analysis challenges. Journal of King Saud University-Engineering Sciences, 30(4), 330-338. https://doi.org/10.1016/j.jksues.2016.04.002 DOI: https://doi.org/10.1016/j.jksues.2016.04.002
Kaur, F., & Bhatia, R. (2016). Sentiment analyzing by dictionary based approach. International Journal of Computer Applications, 152(5), 32-34. https://doi.org/10.5120/ijca2016911814 DOI: https://doi.org/10.5120/ijca2016911814
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82, 3713–3744. https://doi.org/10.1007/s11042-022-13428-4 DOI: https://doi.org/10.1007/s11042-022-13428-4
Liu, B. (2012) Sentiment Analysis and Opinion Mining. Morgan & Claypool. DOI: https://doi.org/10.1007/978-3-031-02145-9
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. https://doi.org/10.1016/j.asej.2014.04.011 DOI: https://doi.org/10.1016/j.asej.2014.04.011
Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11, 81. https://doi.org/10.1007/s13278-021-00776-6 DOI: https://doi.org/10.1007/s13278-021-00776-6
Peretz, O., Koren, M., & Koren, O. (2024). Naive Bayes classifier – An ensemble procedure for recall and precision enrichment. Engineering Applications of Artificial Intelligence, 136(Part B), 108972. https://doi.org/10.1016/j.engappai.2024.108972 DOI: https://doi.org/10.1016/j.engappai.2024.108972
Raiaan, M. A. K, Mukta, S. H., Fatema, K., Fahad, N. M., Sakib, S., & Mim, M. M. J. (2024). A review on large language models: Architectures, applications, taxonomies, open issues and challenges. IEEE Access, 12, 26839-26874. https://doi.org/10.1109/ACCESS.2024.3365742 DOI: https://doi.org/10.1109/ACCESS.2024.3365742
Rish, I. (2001). An empirical study of the naïve bayes classifier. IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 41-46.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/COLI_a_00049 DOI: https://doi.org/10.1162/COLI_a_00049
Umarani, V., Juliana, A., & Deepa, J. (2021). Sentiment analysis using various machine learning and deep learning techniques. Journal of the Nigerian Society of Phisical Sciences, 3(4), 385-394. https://doi.org/10.46481/jnsps.2021.308 DOI: https://doi.org/10.46481/jnsps.2021.308
Wankhade, M., Rao, A. C. S., & Kulkarni C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55, 5731–5780. https://doi.org/10.1007/s10462-022-10144-1 DOI: https://doi.org/10.1007/s10462-022-10144-1
Xu, G., Yu, Z., Yao, H., Li, F., Meng, Y., & Wu, X. (2019). Chinese text sentiment analysis based on extended sentiment dictionary. IEEE Access, 7, 43749-43762. https://doi.org/10.1109/ACCESS.2019.2907772 DOI: https://doi.org/10.1109/ACCESS.2019.2907772
Article Details
Abstract views: 235
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
