Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The defining characteristics of complex industrial systems are interconnected processes that generate immense amounts of stochastic data, often hindering operational optimization, especially metrics such as Overall Equipment Effectiveness (OEE). To address the limitations of traditional methods and earlier machine learning techniques in capturing this complexity, this paper proposes a novel approach using generative doppelgangers, a Generative Adversarial Network (GAN)-based model, to simulate the operational behavior of these systems. This "behavioral doppelganger" learns intricate relationships within historical operational data from a production facility, enabling proactive what-if analyses for OEE optimization. The proposed framework's ability to replicate the impact of process parameters on availability, quality, and performance, which collectively contribute to OEE, is highlighted. The research validates this approach using real data from an industrial sugar plant, demonstrating its potential to provide valuable insights into system behavior under different operational scenarios for proactive optimization.
Keywords:
References
Alqahtani, H., Kavakli-Thorne, M., & Kumar, G. (2021). Applications of generative adversarial networks (GANs): An updated review. Archives of Computational Methods in Engineering, 28(2), 525–552. http://dx.doi.org/10.1007/s11831-019-09388-y DOI: https://doi.org/10.1007/s11831-019-09388-y
Antonucci, D., Conselvan, F., Mascherbauer, P., Harringer, D., & Pozza, C. (2024). Synthetic data on buildings. Machine Learning Applications for Intelligent Energy Management: Invited Chapters from Experts on the Energy Field, 35, 203–226. https://doi.org/10.1007/978-3-031-47909-0_7 DOI: https://doi.org/10.1007/978-3-031-47909-0_7
Bahrum, N. N., Setumin, S., Othman, N. A., Maruzuki, M. I. F., Abdullah, M. F., & Ani, A. I. C. (2024). Performance evaluation of generative adversarial networks for generating mugshot images from text description. Bulletin of Electrical Engineering and Informatics, 13(1), 300–311. https://doi.org/10.11591/eei.v13i1.5895 DOI: https://doi.org/10.11591/eei.v13i1.5895
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv, abs/1803.01271. https://doi.org/10.48550/arXiv.1803.01271
Branytskyi, V., Golovianko, M., Malyk, D., & Terziyan, V. (2022). Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0. Procedia Computer Science, 200, 418–427. https://doi.org/10.1016/j.procs.2022.01.240 DOI: https://doi.org/10.1016/j.procs.2022.01.240
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324
Calix, R., Ugarte, O., Wang, H., & Okosun, T. (2024). A dataset of CFD simulated industrial furnace images for conditional automatic generation with GANs. TMS Annual Meeting & Exhibition, 775–783. https://doi.org/10.1007/978-3-031-50349-8_66 DOI: https://doi.org/10.1007/978-3-031-50349-8_66
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. 22nd acm sigkdd international conference on knowledge discovery and data mining (KDD '16) (pp. 785-794). Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785 DOI: https://doi.org/10.1145/2939672.2939785
Chung, J., Shen, B., & Kong, Z. J. (2024). Anomaly detection in additive manufacturing processes using supervised classification with imbalanced sensor data based on generative adversarial network. Journal of Intelligent Manufacturing, 35, 2387–2406. https://doi.org/10.1007/s10845-023-02163-8 DOI: https://doi.org/10.1007/s10845-023-02163-8
Dash, A., Ye, J., & Wang, G. (2023). A review of generative adversarial networks (GANs) and its applications in a wide variety of disciplines: from medical to remote sensing. IEEE Access, 12, 18330-18357. https://doi.org/10.1109/ACCESS.2023.3346273 DOI: https://doi.org/10.1109/ACCESS.2023.3346273
Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17(2), 124-129. https://psycnet.apa.org/doi/10.1037/h0030377 DOI: https://doi.org/10.1037/h0030377
Farady, I., Islam, J., Tuarob, S., Ng, H.-F., & Lin, C.-Y. (2023). GANs in industrial surface defect detection: Insights and challenges. https://dx.doi.org/10.2139/ssrn.4516131 DOI: https://doi.org/10.2139/ssrn.4516131
Figueira, A., & Vaz, B. (2022). Survey on synthetic data generation, evaluation methods and GANs. Mathematics, 10(15), 2733. https://doi.org/10.3390/math10152733 DOI: https://doi.org/10.3390/math10152733
Fu, W., Chen, Y., Li, H., Chen, X., & Chen, B. (2023). Imbalanced fault diagnosis using conditional wasserstein generative adversarial networks with switchable normalization. IEEE Sensors Journal, 23(23), 29119-29130. https://doi.org/10.1109/JSEN.2023.3322040 DOI: https://doi.org/10.1109/JSEN.2023.3322040
Fukaya, K., Daylamani-Zad, D., & Agius, H. (2023). Intelligent generation of graphical game assets: A conceptual framework and systematic review of the state of the art. ACM Computing Surveys, 57(5), 118. https://doi.org/10.1145/3708499 DOI: https://doi.org/10.1145/3708499
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Communications of the ACM, 63(11), 139-144. http://dx.doi.org/10.1145/3422622 DOI: https://doi.org/10.1145/3422622
Hellmann, F., Mertes, S., Benouis, M., Hustinx, A., Hsieh, T.-C., Conati, C., Krawitz, P & André, E. (2024). Ganonymization: A gan-based face anonymization framework for preserving emotional expressions. ACM Transactions on Multimedia Computing, Communications and Applications, 21(1), 6. https://doi.org/10.1145/3641107 DOI: https://doi.org/10.1145/3641107
Hobbie, H., & Lieberwirth, M. (2024). Compounding or Curative? Investigating the impact of electrolyzer deployment on congestion management in the German power grid. Energy Policy, 185, 113900. https://doi.org/10.1016/j.enpol.2023.113900 DOI: https://doi.org/10.1016/j.enpol.2023.113900
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 DOI: https://doi.org/10.1162/neco.1997.9.8.1735
Hu, C., Sun, Z., Li, C., Zhang, Y., & Xing, C. (2023). Survey of time series data generation in IoT. Sensors, 23(15), 6976. https://doi.org/10.3390/s23156976 DOI: https://doi.org/10.3390/s23156976
Jiang, W., Hong, Y., Zhou, B., He, X., & Cheng, C. (2019). A GAN-based anomaly detection approach for imbalanced industrial time series. IEEE Access, 7, 143608–143619. https://doi.org/10.1109/ACCESS.2019.2944689 DOI: https://doi.org/10.1109/ACCESS.2019.2944689
Khan, I. U., Noor, S., Sajid, A., Javaid, J., & Tabasusum, I. (2023). Comparative analysis of anomaly detection techniques using generative adversarial network. Sir Syed University Research Journal of Engineering & Technology, 13(2), 8-17 http://dx.doi.org/10.33317/ssurj.615 DOI: https://doi.org/10.33317/ssurj.615
Kumarage, T., Ranathunga, S., Kuruppu, C., De Silva, N., & Ranawaka, M. (2019). Generative adversarial networks (GAN) based anomaly detection in industrial software systems. 2019 Moratuwa Engineering Research Conference (MERCon) (pp. 43–48). IEEE. http://dx.doi.org/10.1109/MERCon.2019.8818750 DOI: https://doi.org/10.1109/MERCon.2019.8818750
Kuntalp, M., & Düzyel, O. (2024). A new method for GAN-based data augmentation for classes with distinct clusters. Expert Systems with Applications, 235, 121199. https://doi.org/10.1016/j.eswa.2023.121199 DOI: https://doi.org/10.1016/j.eswa.2023.121199
Kusiak, A. (2020). Convolutional and generative adversarial neural networks in manufacturing. International Journal of Production Research, 58(6), 1594–1604. https://doi.org/10.1080/00207543.2019.1662133 DOI: https://doi.org/10.1080/00207543.2019.1662133
Lin, Z., Jain, A., Wang, C., Fanti, G., & Sekar, V. (2019). Using GANs for sharing networked time series data: Challenges, initial promise, and open questions. ArXiv, abs/2003.03453. https://doi.org/10.48550/arXiv.1909.13403 DOI: https://doi.org/10.1145/3419394.3423643
Luo, J., Huang, J., & Li, H. (2021). A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis. Journal of Intelligent Manufacturing, 32(2), 407–425. https://doi.org/10.1007/s10845-020-01579-w DOI: https://doi.org/10.1007/s10845-020-01579-w
Makhlouf, A., Maayah, M., Abughanam, N., & Catal, C. (2023). The use of generative adversarial networks in medical image augmentation. Neural Computing and Applications, 35, 24055–24068. https://doi.org/10.1007/s00521-023-09100-z DOI: https://doi.org/10.1007/s00521-023-09100-z
Mumbelli, J. D., Guarneri, G. A., Lopes, Y. K., Casanova, D., & Teixeira, M. (2023). An application of generative adversarial networks to improve automatic inspection in automotive manufacturing. Applied Soft Computing, 136, 110105. https://doi.org/10.1016/j.asoc.2023.110105 DOI: https://doi.org/10.1016/j.asoc.2023.110105
Ntavelis, E., Kastanis, I., Van Gool, L., & Timofte, R. (2020). Same same but different: Augmentation of tiny industrial datasets using generative adversarial networks. 2020 7th Swiss Conference on Data Science (SDS) (pp. 17–22). IEEE. https://doi.org/10.1109/SDS49233.2020.00011 DOI: https://doi.org/10.1109/SDS49233.2020.00011
Qian, C., Yu, W., Lu, C., Griffith, D., & Golmie, N. (2022). Toward generative adversarial networks for the industrial internet of things. IEEE Internet of Things Journal, 9(19), 19147–19159. https://doi.org/10.1109/JIOT.2022.3163894 DOI: https://doi.org/10.1109/JIOT.2022.3163894
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. ArXiv, abs/1511.06434. https://doi.org/10.48550/arXiv.1511.06434
Ren, L., Wang H., Li, J., Tang, Y., & Yang, C. (2024). AIGC for industrial time series: From deep generative models to large generative models. ArXiv, abs/2407.11480. https://doi.org/10.48550/arXiv.2407.11480 DOI: https://doi.org/10.1109/TSMC.2025.3598252
Rezaei, S., Cornelius, A., Karandikar, J., Schmitz, T., & Khojandi, A. (2024). Using GANs to predict milling stability from limited data. Journal of Intelligent Manufacturing, 36, 1201–1235. https://doi.org/10.1007/s10845-023-02291-1 DOI: https://doi.org/10.1007/s10845-023-02291-1
Saiz, F. A., Alfaro, G., Barandiaran, I., & Graña, M. (2021). Generative adversarial networks to improve the robustness of visual defect segmentation by semantic networks in manufacturing components. Applied Sciences, 11(14), 6368. https://doi.org/10.3390/app11146368 DOI: https://doi.org/10.3390/app11146368
Salierno, G., Leonardi, L., & Cabri, G. (2024). A big data architecture for digital twin creation of railway signals based on synthetic data. IEEE Open Journal of Intelligent Transportation Systems, 5, 342-359. https://doi.org/10.1109/OJITS.2024.3412820 DOI: https://doi.org/10.1109/OJITS.2024.3412820
Song, J., Lee, Y. C., & Lee, J. (2023). Deep generative model with time series-image encoding for manufacturing fault detection in die casting process. Journal of Intelligent Manufacturing, 34, 3001–3014. http://dx.doi.org/10.1007/s10845-022-01981-6 DOI: https://doi.org/10.1007/s10845-022-01981-6
Sun, C. (2024). Deep Generative Models for Network Data Synthesis and Monitoring. The University of Edinburgh.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. ArXiv, abs/1706.03762. http://dx.doi.org/10.48550/arXiv.1706.03762
Vdoviak, G., & Giedra, H. (2024). Review and experimental comparison of generative adversarial networks for synthetic image generation. New Trends in Computer Sciences, 2(1), 1–18. https://doi.org/10.3846/ntcs.2024.20516 DOI: https://doi.org/10.3846/ntcs.2024.20516
Wang, Y., & Yan, P. (2024). RegGAN: A virtual sample generative network for developing soft sensors with small data. ACS Omega, 9(5), 5954–5965. https://doi.org/10.1021/acsomega.3c09762 DOI: https://doi.org/10.1021/acsomega.3c09762
Yoon, J., Jarrett, D., & van der Schaar, M. (2019). Time-series generative adversarial networks. 33rd International Conference on Neural Information Processing Systems (pp. 5508-5518). Curran Associates Inc.
Yuan, Y., Zhang, Y., & Ding, H. (2020). Research on key technology of industrial artificial intelligence and its application in predictive maintenance. Acta Automatica Sinica, 46(10), 2013–2030. http://dx.doi.org/10.16383/j.aas.c200333
Zhang, H., Dereck, S. S., Wang, Z., Lv, X., Xu, K., Wu, L., Jia, Y., Wu, J., Long, Z., Liang, W., M, X. G., & Huang, G. B. (2023). Large scale foundation models for intelligent manufacturing applications: a survey. ArXiv, abs/2312.06718. https://doi.org/10.48550/arXiv.2312.06718
Zhang, Y., Schlueter, A., & Waibel, C. (2023). SolarGAN: Synthetic annual solar irradiance time series on urban building facades via Deep Generative Networks. Energy and AI, 12, 100223. https://doi.org/10.1016/j.egyai.2022.100223 DOI: https://doi.org/10.1016/j.egyai.2022.100223
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237. https://doi.org/10.1016/j.ymssp.2018.05.050 DOI: https://doi.org/10.1016/j.ymssp.2018.05.050
Zhou, R., Jiang, C., & Xu, Q. (2021). A survey on generative adversarial network-based text-to-image synthesis. Neurocomputing, 451, 316–336. https://doi.org/10.1016/j.neucom.2021.04.069 DOI: https://doi.org/10.1016/j.neucom.2021.04.069
Article Details
Abstract views: 137
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
