An ensemble model for maternal health risk classification in Delta State, Nigeria
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
oghenevbaire.efevberha-ogodo@physci.uniben.edu
Abstract
Maternal mortality remains a critical challenge in Sub-Saharan Africa, with Nigeria ranking among the countries with the highest rates. The loss of women in their reproductive years destabilizes families causing emotional trauma, places additional strain on healthcare systems, and has profound economic and national developmental consequences. As a result, one of the United Nations Sustainable Development goals (SDGs) is targetted at reducing maternal mortality and morbidity at all cost. This study explores the application of Artificial Intelligence (AI) in healthcare through the development of a predictive ensemble model to classify maternal health risks as identifying high risk pregnancies can inform timely clinical decision making that mitigates maternal mortality. Maternal health dataset was sourced from three (3) health centers in Delta State, Nigeria.. Nine supervised machine learning classifiers were utilized, including Linear Support Vector Machine, Gaussian Naïve Bayes, Multilayer Perceptron, Decision Tree, Random Forest, Gradient Boosting Decision Tree, Extreme Gradient Boosting, Light Gradient Boosting Machine, and Categorical Boosting. To enhance predictive performance, the classifiers were combined in an ensemble model. Results showed that the Gradient Boosting Decision Tree achieved the highest accuracy at 90% before upsampling and Random Forest achieved an accuracy of 97% at upsampling. The lowest-performing classifier was Linear Support Vector Machine before and after upsampling. The ensemble model surpassed all individual classifiers, achieving 98% accuracy and precision and over 1% increase in accuracy after upsampling. This study highlights the potential of AI-driven predictive models to optimize healthcare resources and improve maternal health outcomes in Delta State, Nigeria.
Keywords:
References
Ahmed, M. (2020). Maternal health risk. UCI Machine Learning Repository. https://doi.org/10.24432/C5DP5D
Dawodi, M., Wada, T., & Baktash. J. A. (2020). Applicability of ICT, data mining and machine learning to reduce maternal mortality and morbidity: Case study Afghanistan. International Information Institute, 23(1), 33-45.
Gomez-Jemes, L., Oprescu, A. M., Chimenea-Toscano, A., Lutgardo, G., & Romero-Tornero, M. (2022). Machine learning to predict pre-eclampsia and uterine growth restriction in pregnant women. Electronics, 11(19), 3240. https://doi.org/10.3390/electronics11193240 DOI: https://doi.org/10.3390/electronics11193240
Izugbara, C. O., Wekesah, F. M. & Adedini, S. A. (2016). Maternal health in Nigeria: A situation update. African Population and Health Research Centre. http://dx.doi.org/10.13140/RG.2.1.1291.9924
James, I., & Osubor, V. (2025). Machine learning evidence towards the eradication of malria burden: A scoping review. Applied Computer Science, 21(1), 46-69. https://doi.org/10.35784/acs_6873 DOI: https://doi.org/10.35784/acs_6873
Jayatilake, S. M., & Ganegoda, G. (2021). Involvement of machine learning tools in healthcare decision making. Hindawi Journal of Healthcare Engineering, 2021(1), 679512. https://doi.org/10.1155/2021/6679512 DOI: https://doi.org/10.1155/2021/6679512
Khadka, N. (2024). How stacking technique boost’s machine learning model’s performance. Retrieved September 23, 2024 from https://dataaspirant.com/stacking-technique
Kopanitsa, G., Metsker, O., Paskochev, D. &, Greschischeva, S. (2021). Identification of risk factors and prediction of sepsis in pregnancy using machine learning. Procedia Computer Science, 193, 393-401. https://doi.org/10.1016/j.procs.2021.10.040 DOI: https://doi.org/10.1016/j.procs.2021.10.040
Machoron, J. J. E., Inbaraj, C. N., & Jeng, X. A. (2022). A semi-supervised machine learning approach in predicting high-risk pregnancies in the Philippines. Diagnostics, 12(11), 2782. https://doi.ord/10.3390/diagnostics/2112782 DOI: https://doi.org/10.3390/diagnostics12112782
Mashrafi, S. S. A., Tafakori, L., & Abdollahian, M. (2024). Predicting maternal risk levels using machine learning models. BMC Pregnancy and Child Health, 24, 820. https://doi.org/10.1186/s12884-024-07030-9 DOI: https://doi.org/10.1186/s12884-024-07030-9
Kalirane, M. (2024). Bagging, boosting and stacking: Ensemble learning in ml models. Analitics Vidhya. https://www.analyticsvidhya.com/blog/2023/01/ensemble-learning-methods-bagging-boosting-and-stacking/
Mboya, I. B., Mahande, M. J., Mohanad, M., Obure, J., & Mwambi, H. G. (2020). Prediction of perinatal death using machine learning models: A birth registry-based cohort study in northern tanzania. British Medical Journal Open, 10(10), e040132. https://doi.org/10.1136/bmjopen-2020-040132 DOI: https://doi.org/10.1136/bmjopen-2020-040132
Mienye, D. I., & Sun, Y. (2022). A survey of ensemble learning: Concepts, algorithms, applications and prospects. IEEE Access, 10, 99129-99149. https://doi.org/10.1109/ACCESS.2022.3207287 DOI: https://doi.org/10.1109/ACCESS.2022.3207287
Mondal, S., Nag, A., Barman, A. K., & Karmakar, M. (2023). Machine-learning based maternal health risk prediction for IoMT framework. International Journal of Experimental Research and Review, 32, 145-159. https://doi.org/10.52756/ijerr.2023.v32.012 DOI: https://doi.org/10.52756/ijerr.2023.v32.012
Mustamin, N. F., Aziz, F., Firmansyah, & Ishak, P. (2023). Classification of maternal health risk using three models Naïve Base method. Indonesian Journal of Computing and Cybernetics Systems,17(4), 395-404. https://doi.org/10.22146/ijccs.84242 DOI: https://doi.org/10.22146/ijccs.84242
Mutlu, H. B., Yucel, N., Durmaz, F., Cengil, E., & Yildirim, M. (2023). Prediction of maternal health risk with traditional machine learning methods. MTU Journal of Engineering and Natural Sciences, 4(1), 16-23. https://doi.org/10.46572/naturengs.1293185 DOI: https://doi.org/10.46572/naturengs.1293185
Nirmala, & Kambili, R. S. (2023). Maternal risk level prediction using ensemble model. International Journal of Creative Research Thoughts, 11(3),916-920.
O’Neil, A. (2023). Total population in Nigeria from 2011 to 2021, by Gender (in millions). Statista. https://www.statista.com/statistics/967908/total-population-of-nigeria-by-gender/#:~:text=This%20statistic%20shows%20the%20total,to%20approximately%20107.83%20million%20inhabitants
Ogallo, W., Speakman, S., Akinwande, V., Vashrey, R. K., Walcott-Bryant, A., Wayua, C., Weldermarian, K., Mershon, C., & Orobaton, N. (2020). Identifying factors associated with neonatal mortality in sub-saharan Africa using machine learning. medRxiv. https://doi.org/10.1101/2020.10.14.20212225 DOI: https://doi.org/10.1101/2020.10.14.20212225
Okpono, J., Asedegbega, J., & Sanyaolu, T. O. (2024). Enhancing the predictive accuracy of machine learning models for project management challenges: A comparative study of advanced techniques for handling imbalanced data. Technix International Journal for Engineering Research, 11(9), 99129-99137. http://dx.doi.org/10.5281/zenodo.13817083
Olonade, O., Olawande, T. I., Alabi, O. J. & Imhonopi, D. (2019). Maternal mortality and maternal healthcare in nigeria: Implications for socio-economic development. Open Access Macedonian Journal of Medical Sciences, 7(5), 849-855. https://doi.org/10.3889/oamjms.2019.041 DOI: https://doi.org/10.3889/oamjms.2019.041
Rosser, J. I., Aluri, K. Z., Kempinsky, A., Shannon, R., & Bendavid, E. (2022). The effect of healthcare worker density on maternal health service utilization in sub-saharan Africa. The American journal of tropical medicine and hygiene, 106(3), 939-944. https://doi.org/10.4269/ajtmh.21-0727 DOI: https://doi.org/10.4269/ajtmh.21-0727
Togunwa, T. O., Babatunde, A. O., & Abdullah, K. K-u-R. (2023). Deep hybrid model for maternal health risk classification in pregnancy: synergy of ann and random forest. Frontiers in Artificial Intelligence, 6. 1213436. https://doi.org/10.3389/frai.2023.1213436 DOI: https://doi.org/10.3389/frai.2023.1213436
United Nations Country Office in Nigeria.(2015). Delta State Development Performance. Health Sector Report, 1991 - 2013 https://www.undp.org/sites/g/files/zskgke326/files/migration/ng/UNDP_NG_DeltaState_Health_2015.pdf
Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings?. British Medical Journal Global Health 2018, 3, e000798. https://doi.org/10.1136/bmjgh-2018-000798
World Health Organisation. (2019). Maternal Health. http://www.who.int/maternal-health/en/
World Health Organisation. (2023). Trends in maternal mortality 2000 to 2017: Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division: Executive summary. http://apps.who.int/iris/handle/10665/327596
Article Details
Abstract views: 85
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
