Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Chronic Kidney Disease is a progressive medical ailment of growing global health importance because, in most cases, this ailment shows no symptoms during its early stages. Improving patients’ outcomes and early detection are significant aspects of managing diseases. In this paper, deep learning models to classify the images of kidney diseases are presented based on a dataset of 12, 446 images collected from various renal diseases. Therefore, CNN, VGG16, MobileNet V2, DenseNet 121, and ResNet 50 were the fine-tuned and evaluated models. The training setting was the Adam optimizer, categorical cross entropy loss, and 10 epochs. Hence, the model's performance was measured using the accuracy, precision, recall, and F1-score evaluation parameters. Following that, the current evaluation illustrates that most of the examined models positively predict outstanding accuracies, with ResNet 50 having a maximal validation and test accuracy rate reaching 99.40%. At the same time, MobileNet V2 and DenseNet 121 also boast of their high efficacy. The researchers' works highlighted that deep learning algorithms are very helpful for diagnosing kidney diseases based on medical images, underlining that their application can significantly change early diagnosis and patient treatment.
Keywords:
References
Al-Neama, M. W., Alshiha, A. A. M., & Saeed, M. G. (2023). A parallel algorithm of multiple face detection on a multi-core system. Indonesian Journal of Electrical Engineering and Computer Science, 29(2), 1166–1173. https://doi.org/10.11591/ijeecs.v29.i2.pp1166-1173 DOI: https://doi.org/10.11591/ijeecs.v29.i2.pp1166-1173
Al-Qubaa, A. R., Al-Shiha, A., & Tian, G. Y. (2014). Gun detection and classification based on feature extraction from a new sensor array imaging system. 2013 International Conference on Electrical Communications, Computation, Power and Control Engineering (ICECCPCE) (pp. 88–94). IEEE. https://doi.org/10.1109/ICECCPCE.2013.6998740 DOI: https://doi.org/10.1109/ICECCPCE.2013.6998740
Alsalman, F. A., Khorshid, S. F., & Sallow, A. B. (2022). Disease diagnosis systems using machine learning and deep learning techniques based on Tensor Flow toolkit: A review. Al-Rafidain Journal of Computer Sciences and Mathematics, 16(1), 111-120. https://doi.org/10.33899/csmj.2022.174415 DOI: https://doi.org/10.33899/csmj.2022.174415
Amirgaliyev, Y., Shamiluulu, S., & Serek, A. (2018). Analysis of chronic kidney disease dataset by applying machine learning methods. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT) (pp. 1–4). IEEE. https://doi.org/10.1109/ICAICT.2018.8747140 DOI: https://doi.org/10.1109/ICAICT.2018.8747140
Charleonnan, A., Fufaung, T., Niyomwong, T., Chokchueypattanakit, W., Suwannawach, S., & Ninchawee, N. (2017). Predictive analytics for chronic kidney disease using machine learning techniques. 2016 Management Innovation and Technology International Conference (MITiCON) (pp. MIT80–MIT83). IEEE. https://doi.org/10.1109/MITICON.2016.8025242 DOI: https://doi.org/10.1109/MITICON.2016.8025242
Delrue, C., De Bruyne, S., & Speeckaert, M. M. (2024). Application of machine learning in chronic kidney disease: Current status and prospects. Biomedicines, 12(3), 568. https://doi.org/10.3390/biomedicines12030568 DOI: https://doi.org/10.3390/biomedicines12030568
Dipto, I. C., Rahman, M. A., Islam, T., & Rahman, H. M. M. (2020). Prediction of accident severity using artificial neural network: A comparison of analytical capabilities between Python and R. Journal of Data Analysis and Information Processing, 8(3), 134-157. https://doi.org/10.4236/jdaip.2020.83008 DOI: https://doi.org/10.4236/jdaip.2020.83008
Dritsas, E., & Trigka, M. (2022). Machine learning techniques for chronic kidney disease risk prediction. Big Data Cognitive Computing, 6(3), 98. https://doi.org/10.3390/bdcc6030098 DOI: https://doi.org/10.3390/bdcc6030098
Emon, M. U., Imran, A. M., Islam, R., Keya, M. S., Zannat, R., & Ohidujjaman. (2021). Performance analysis of chronic kidney disease through machine learning approaches. 2021 6th International Conference on Inventive Computation Technologies (ICICT) (pp. 713–719). IEEE. https://doi.org/10.1109/ICICT50816.2021.9358491 DOI: https://doi.org/10.1109/ICICT50816.2021.9358491
Ghosh, P., Shamrat, F. M. J. M., Shultana, S., Afrin, S., Anjum, A. A., & Khan, A. A. (2020). Optimization of prediction method of chronic kidney disease using a machine learning algorithm. Proceedings of the 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP) (p. 1-6). IEEE. https://doi.org/10.1109/iSAI-NLP51646.2020.9376787 DOI: https://doi.org/10.1109/iSAI-NLP51646.2020.9376787
Gunarathne, W. H. S., Perera, K. D. M., & Kahandawaarachchi, K. A. D. C. (2017). Performance evaluation on machine learning classification techniques for disease classification and forecasting through data analytics for chronic kidney disease (CKD). 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 291–296). https://doi.org/10.1109/BIBE.2017.00-39 DOI: https://doi.org/10.1109/BIBE.2017.00-39
Gupta, R., Koli, N., Mahor, N., & Tejashri, N. (2020). Performance analysis of machine learning classifier for predicting chronic kidney disease. 2020 International Conference for Emerging Technology (INCET) (pp. 1–4). IEEE. https://doi.org/10.1109/INCET49848.2020.9154147 DOI: https://doi.org/10.1109/INCET49848.2020.9154147
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). IEEE. https://doi.org/10.1109/CVPR.2016.90 DOI: https://doi.org/10.1109/CVPR.2016.90
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. ArXiv, abs/1704.04861. https://doi.org/10.48550/arXiv.1704.04861
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2261-2269). https://doi.org/10.1109/CVPR.2017.243 DOI: https://doi.org/10.1109/CVPR.2017.243
Iftikhar, H., Khan, M., Khan, Z., Khan, F., Alshanbari, H. M., & Ahmad, Z. (2023). A comparative analysis of machine learning models: A case study in predicting chronic kidney disease. Sustainability, 15(3), 2754. https://doi.org/10.3390/su15032754 DOI: https://doi.org/10.3390/su15032754
James, I., & Osubor, V. (2025). Machine learning evidence towards eradication of malaria burden: A scoping review. Applied Computer Science, 21(1), 44–69. https://doi.org/10.35784/acs_6873 DOI: https://doi.org/10.35784/acs_6873
Kaddari, Z., Hachmi, I. El, Berrich, J., Amrani, R., & Bouchentouf, T. (2024). Evaluating large language models for medical information extraction: A comparative study of zero-shot and schema-based methods. Applied Computer Science, 20(4), 138–148. https://doi.org/10.35784/acs-2024-44 DOI: https://doi.org/10.35784/acs-2024-44
Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L., & Perkovic, V. (2021). Chronic kidney disease. The Lancet, 398(10302), 786–802. https://doi.org/10.1016/S0140-6736(21)00519-5 DOI: https://doi.org/10.1016/S0140-6736(21)00519-5
Kamal, M. I. A., & Ramo, F. M. (2024). Intelligent prediction of human health risks based on medical history: A review. Al-Rafidain Journal of Computer Sciences and Mathematics, 18(2), 33-45. https://doi.org/10.33899/csmj.2024.147703.1113 DOI: https://doi.org/10.33899/csmj.2024.147703.1113
Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14 DOI: https://doi.org/10.35784/acs-2022-14
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on machine learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136–150. https://Doi.Org/10.35784/Acs-2023-40 DOI: https://doi.org/10.35784/acs-2023-40
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of eemd-dfa algorithms and ann classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18 DOI: https://doi.org/10.35784/acs-2024-18
Manonmani, M., & Balakrishnan, S. (2020). Feature selection using improved teaching learning based algorithm on chronic kidney disease dataset. Procedia Computer Science, 171, 1660–1669. https://doi.org/10.1016/j.procs.2020.04.178 DOI: https://doi.org/10.1016/j.procs.2020.04.178
Markoulidakis, I., Rallis, I., Georgoulas, I., Kopsiaftis, G., Doulamis, A., & Doulamis, N. (2021). Multiclass confusion matrix reduction method and its application on net promoter score classification problem. Technologies, 9(4), 81. https://doi.org/10.3390/technologies9040081 DOI: https://doi.org/10.3390/technologies9040081
Meddage, D. P. P., Ekanayake, I. U., Weerasuriya, A. U., & Lewangamage, C. S. (2021). Tree-based regression models for predicting external wind pressure of a building with an unconventional configuration. 2021 Moratuwa Engineering Research Conference (MERCon) (pp. 257–262). IEEE. https://doi.org/10.1109/MERCon52712.2021.9525734 DOI: https://doi.org/10.1109/MERCon52712.2021.9525734
Mohammed, T. J., & Al-Hayali, H. L. (2024). Effect of chronic kidney disease on liver functions. Rafidain Journal of Science, 33(3), 1-7. https://doi.org/10.33899/rjs.2024.184530 DOI: https://doi.org/10.33899/rjs.2024.184530
Na, H. C., & Kim, Y. S. (2024). Study on deep learning models for vr sickness levels classification. Applied Computer Science, 20(4), 1–13. https://doi.org/10.35784/acs-2024-37 DOI: https://doi.org/10.35784/acs-2024-37
Polat, H., Danaei Mehr, H., & Cetin, A. (2017). Diagnosis of chronic kidney disease based on support vector machine by feature selection methods. Journal of Medical Systems, 41, 55. https://doi.org/10.1007/s10916-017-0703-x DOI: https://doi.org/10.1007/s10916-017-0703-x
Rubini, L. J., & Perumal, E. (2020). Efficient classification of chronic kidney disease by using multi-kernel support vector machine and fruit fly optimization algorithm. International Journal of Imaging Systems and Technology, 30(3), 660–673. https://doi.org/10.1002/ima.22406 DOI: https://doi.org/10.1002/ima.22406
Salekin, A., & Stankovic, J. (2016). Detection of chronic kidney disease and selecting important predictive attributes. 2016 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 262–270). IEEE. https://doi.org/10.1109/ICHI.2016.36 DOI: https://doi.org/10.1109/ICHI.2016.36
Sanmarchi, F., Fanconi, C., Golinelli, D., Gori, D., Hernandez-Boussard, T., & Capodici, A. (2023). Predict, diagnose, and treat chronic kidney disease with machine learning: A systematic literature review. Journal of Nephrology, 36, 1101–1117. https://doi.org/10.1007/s40620-023-01573-4 DOI: https://doi.org/10.1007/s40620-023-01573-4
Sharma, S., Sharma, V., & Sharma, A. (2016). Performance-based evaluation of various machine learning classification techniques for chronic kidney disease diagnosis. ArXiv, abs/1606.09581. https://doi.org/10.48550/arXiv.1606.09581
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. ArXiv, abs/1409.1556. https://doi.org/10.48550/arXiv.1409.1556
Swain, D., Mehta, U., Bhatt, A., Patel, H., Patel, K., Mehta, D., Acharya, B., Gerogiannis, V. C., Kanavos, A., & Manika, S. (2023). A robust chronic kidney disease classifier using machine learning. Electronics, 12(1), 212. https://doi.org/10.3390/electronics12010212 DOI: https://doi.org/10.3390/electronics12010212
Tazin, N., Sabab, S. A., & Chowdhury, M. T. (2016). Diagnosis of chronic kidney disease using effective classification and feature selection technique. 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec) (pp. 1–6). IEEE. https://doi.org/10.1109/MEDITEC.2016.7835365 DOI: https://doi.org/10.1109/MEDITEC.2016.7835365
Vujović, Ž. Ð. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12(6), 599–606. https://doi.org/10.14569/IJACSA.2021.0120670 DOI: https://doi.org/10.14569/IJACSA.2021.0120670
Wibawa, M. S., Maysanjaya, I. M. D., & Putra, I. M. A. W. (2017). Boosted classifier and feature selection for enhancing chronic kidney disease diagnosis. 2017 5th International Conference on Cyber and IT Service Management (CITSM) (pp. 1–6). IEEE. https://doi.org/10.1109/CITSM.2017.8089245 DOI: https://doi.org/10.1109/CITSM.2017.8089245
Yildirim, P. (2017). Chronic kidney disease prediction on imbalanced data by multilayer perceptron: Chronic kidney disease prediction. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC) (pp. 193–198). IEEE. https://doi.org/10.1109/COMPSAC.2017.84 DOI: https://doi.org/10.1109/COMPSAC.2017.84
Article Details
Abstract views: 160
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
