Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Industrial mobile robots face critical positioning challenges that impact manufacturing efficiency, warehouse automation productivity, and biomedical service delivery. This paper presents a reproducible framework for quantifying odometric drift in differential-drive robots, validated by consumer-grade, low-cost VR tracking. Applications include industrial automation calibration, warehouse logistics management, and precision biomedical device positioning. Through more than 750 automated experimental trials spanning a comprehensive matrix of motor configurations and path geometries, the results show that both path complexity and turn size significantly influence drift patterns. Specifically, routes with higher geometric complexity (12-15 segments) exhibited 22% greater position error than simpler paths. The analysis used advanced metrics such as the Normalized Drift Contribution Index. The results confirm robust, high-resolution drift analysis and provide a low-cost validation tool for robot calibration in manufacturing and medical instrumentation. The work provides actionable insights for optimizing robot programming, calibration, and curriculum design, and establishes a scalable protocol for benchmarking autonomous navigation systems in real-world scenarios. In addition, the methodology enables data-driven decision making for robot fleet management, reducing operational downtime compared to manual calibration methods, while providing quantitative performance benchmarks essential for industrial quality control standards.
Keywords:
References
Agrawal, D. R., Kim, T., Govindjee, R., Adeshara, T., Yu, J., Ravikumar, A., & Panagou, D. (2025). Certifiably-correct mapping for safe navigation despite odometry drift. ArXiv, abs/2504.18713. https://doi.org/10.48550/arXiv.2504.18713 DOI: https://doi.org/10.15607/RSS.2025.XXI.007
Alici, G., & Shirinzadeh, B. (2005). A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mechanism and Machine Theory, 40(8), 879–906. https://doi.org/10.1016/J.MECHMACHTHEORY.2004.12.012 DOI: https://doi.org/10.1016/j.mechmachtheory.2004.12.012
Araujo, H. L., Gulfo Agudelo, J., Crawford Vidal, R., Ardila Uribe, J., Freddy Remolina, J., Serpa-Imbett, C., López, A. M., & Patiño Guevara, D. (2022). Autonomous mobile robot implemented in LEGO EV3 integrated with Raspberry Pi to use Android-based vision control algorithms for human-machine interaction. Machines, 10(3), Article 193. https://doi.org/10.3390/MACHINES10030193 DOI: https://doi.org/10.3390/machines10030193
Bilal, D. K., & Unel, M. (2021). Increasing trajectory tracking accuracy of industrial robots using SINDYc. IFAC-PapersOnLine, 54(4), 13–18. https://doi.org/10.1016/J.IFACOL.2021.10.003 DOI: https://doi.org/10.1016/j.ifacol.2021.10.003
Borges, M., Symington, A., Coltin, B., Smith, T., & Ventura, R. (2018). HTC Vive: Analysis and accuracy improvement. IEEE International Conference on Intelligent Robots and Systems (pp. 2610–2615). IEEE. https://doi.org/10.1109/IROS.2018.8593707 DOI: https://doi.org/10.1109/IROS.2018.8593707
Buchanan, E., Alden, K., Pomfret, A., Timmis, J., & Tyrrell, A. M. (2023). A study of error diversity in robotic swarms for task partitioning in foraging tasks. Frontiers in Robotics and AI, 9, Article 904341. https://doi.org/10.3389/FROBT.2022.904341 DOI: https://doi.org/10.3389/frobt.2022.904341
De Giorgi, C., De Palma, D., & Parlangeli, G. (2023). Online odometry calibration for differential drive mobile robots in low traction conditions with slippage. Robotics, 13(1), Article 7. https://doi.org/10.3390/ROBOTICS13010007 DOI: https://doi.org/10.3390/robotics13010007
Dmytriv, V., Dmytriv, I., Horodetskyy, I., Hutsol, T., Kukharets, S., Cesna, J., Bleizgys, R., Pietruszynska, M., Parafiniuk, S., Kubon, M., & Horetska, I. (2024). A method for simulating the positioning errors of a robot gripper. Applied Sciences, 14(14), Article 6159. https://doi.org/10.3390/APP14146159 DOI: https://doi.org/10.3390/app14146159
Dong, C., Povorozniuk, O., Topalov, A., Wang, K., & Chen, Z. (2023). Development of the control system for LEGO Mindstorms EV3 mobile robot based on MATLAB/Simulink elements. Technology Audit and Production Reserves, 1(2), 30–35. https://doi.org/10.15587/2706-5448.2023.274846 DOI: https://doi.org/10.15587/2706-5448.2023.274846
Đurašević, S., & Milovanović, A. (2017). Correction of systematic errors in odometry model for position determination of mobile tracked robot. 60th International Scientific Conference on Information, Communication and Energy Systems and Technologies Proceedings.
Đurašević, S., & Milovanović, A. (2021). Design for the mobile robots' position with the application of odometry. International Journal of Web Applications, 13, 11–18. https://doi.org/10.6025/ijwa/2021/13/1/11-18
Ferreira, M., Moreira, L., & Lopes, A. (2023). Differential drive kinematics and odometry for a mobile robot using TwinCAT. Electronic Research Archive, 31(4), 1789–1803. https://doi.org/10.3934/ERA.2023092 DOI: https://doi.org/10.3934/era.2023092
Gavrilas, L., & Kotsis, K. T. (2024). Development and validation of a survey instrument towards attitude, knowledge, and application of educational robotics (AKAER). International Journal of Research and Method in Education, 48(1), 44-66. https://doi.org/10.1080/1743727X.2024.2358780 DOI: https://doi.org/10.1080/1743727X.2024.2358780
Hsiao, T., Sheu, S. J., & He, R. (2022). A multi-precision indoor localization strategy based on hybrid Vive and adaptive Monte Carlo method. 2022 International Automatic Control Conference (CACS 2022) (pp. 1-6). IEEE. https://doi.org/10.1109/CACS55319.2022.9969805 DOI: https://doi.org/10.1109/CACS55319.2022.9969805
Huang, X., Rendon-Morales, E., & Aviles-Espinosa, R. (2023). Towards cellular level microsurgery: Design and testing of a high precision delta robot for medical applications. Proceedings of The 15th Hamlyn Symposium on Medical Robotics 2023. UK-Robotics and Autonomous Systems (RAS) Network. DOI: https://doi.org/10.31256/HSMR2023.9
Jackson, B. E., Evangelista, D. J., Ray, D. D., & Hedrick, T. L. (2016). 3D for the people: Multi-camera motion capture in the field with consumer-grade cameras and open source software. Biology Open, 5(9), 1334–1342. https://doi.org/10.1242/BIO.018713 DOI: https://doi.org/10.1242/bio.018713
Jialong, G., Sun, L., Xiang, X., & Li, Z. (2020). A real-time method on robot with continuous trajectory for low-drift odometry and mapping. Journal of Physics: Conference Series, 1576(1), Article 012058. https://doi.org/10.1088/1742-6596/1576/1/012058 DOI: https://doi.org/10.1088/1742-6596/1576/1/012058
Jin, J., & Chung, W. (2019). Obstacle avoidance of two-wheel differential robots considering the uncertainty of robot motion on the basis of encoder odometry information. Sensors, 19(2), Article 289. https://doi.org/10.3390/S19020289 DOI: https://doi.org/10.3390/s19020289
Jung, B., & Sukhatme, G. S. (2010). Real-time motion tracking from a mobile robot. International Journal of Social Robotics, 2(1), 63–78. https://doi.org/10.1007/S12369-009-0038-Y DOI: https://doi.org/10.1007/s12369-009-0038-y
Kenny, A., Christiand, & Kurniawan, R. (2025). Robot self-balancing berbasis LEGO Mindstorm EV3 untuk pembelajaran robotika. Cylinder: Jurnal Ilmiah Teknik Mesin, 11(1). https://doi.org/10.25170/CYLINDER.V11I1.6675 DOI: https://doi.org/10.25170/cylinder.v11i1.6675
Khafagy, R. R., Eltaib, M. E. H., & Abo-Shanab, R. F. (2025). Automated complex path extraction and optimization based on scalable vector graphics and genetic algorithm for industrial robot applications. International Journal of Advanced Manufacturing Technology, 139(1), 1033–1052. https://doi.org/10.1007/S00170-025-15846-8 DOI: https://doi.org/10.1007/s00170-025-15846-8
Kin, W. S., Ghani, N. M. A., Masrom, M. F., Jamin, N. F., & Razali, N. A. A. (2019). Control of a two-wheeled Lego EV3 robot using interval type-2 fuzzy logic with particle swarm optimization. 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (pp. 175-182). CLAWAR. https://doi.org/10.13180/CLAWAR.2019.26-28.08.35 DOI: https://doi.org/10.13180/clawar.2019.26-28.08.35
Kuti, J., Piricz, T., & Galambos, P. (2024). A robust method for validating orientation sensors using a robot arm as a high-precision reference. Sensors, 24(24), Article 8179. https://doi.org/10.3390/S24248179 DOI: https://doi.org/10.3390/s24248179
LEGO Technic GoPro mount by mrusk. (n.d.). Printables.com. https://www.printables.com/model/334045-lego-technic-gopro-mount
LEGO. (n.d.). EV3 devices – EV3 devices — ev3-micropython 2.0.0 documentation. https://pybricks.com/ev3-micropython/ev3devices.html
Luo, S., Zhang, M., Zhuang, Y., Ma, C., & Li, Q. (2023). A survey of path planning of industrial robots based on rapidly exploring random trees. Frontiers in Neurorobotics, 17, Article 1268447. https://doi.org/10.3389/FNBOT.2023.1268447 DOI: https://doi.org/10.3389/fnbot.2023.1268447
Maga Vasile, A. (2024). Development of a mobile platform with differential drive for industrial applications. Acta Universitatis Cibiniensis. Technical Series, 76(1), 82–87. https://doi.org/10.2478/AUCTS-2024-0012 DOI: https://doi.org/10.2478/aucts-2024-0012
Maga Vasile, A., & Crenganis, M. (2024). Optimized dimensioning and encoder configuration for AGV traction systems. Acta Universitatis Cibiniensis. Technical Series, 76(1), 75–81. https://doi.org/10.2478/AUCTS-2024-0011 DOI: https://doi.org/10.2478/aucts-2024-0011
Merker, S., Pastel, S., Bürger, D., Schwadtke, A., & Witte, K. (2023). Measurement accuracy of the HTC VIVE Tracker 3.0 compared to Vicon System for generating valid positional feedback in virtual reality. Sensors, 23(17), Article 7371. https://doi.org/10.3390/S23177371 DOI: https://doi.org/10.3390/s23177371
Mitchell, A. C. (2015). Modeling and control of a motor system using the Lego EV3 robot. [Doctoral dissertation]. https://doi.org/10.12794/METADC804943 DOI: https://doi.org/10.12794/metadc804943
Montés, N., Rosillo, N., Mora, M. C., & Hilario, L. (2018). Real-time Matlab-Simulink-Lego EV3 framework for teaching robotics subjects. Advances in Intelligent Systems and Computing, 829, 230-240. Springer. https://doi.org/10.1007/978-3-319-97934-2_15 DOI: https://doi.org/10.1007/978-3-319-97085-1_23
Montés, N., Rosillo, N., Mora, M. C., & Hilario, L. (2021). A novel real-time MATLAB/Simulink/LEGO EV3 platform for academic use in robotics and computer science. Sensors, 21(3), Article 1006. https://doi.org/10.3390/S21031006 DOI: https://doi.org/10.3390/s21031006
Montusiewicz, J., & Skulimowski, S. (2019). Multicriteria evaluation of the trajectory of a wheeled mobile robot – a case study. MATEC Web of Conferences, 252, Article 09007. https://doi.org/10.1051/MATECCONF/201925209007 DOI: https://doi.org/10.1051/matecconf/201925209007
Nie, J., Zhang, X., Sheng, C., Wang, H., & Lu, X. (2025). Improved sliding mode path tracking control for automated guided vehicles with the disturbances compensation. International Journal of Advanced Robotic Systems, 22(2). https://doi.org/10.1177/17298806251326424 DOI: https://doi.org/10.1177/17298806251326424
Niehorster, D. C., Li, L., & Lappe, M. (2017). The accuracy and precision of position and orientation tracking in the HTC Vive virtual reality system for scientific research. i-Perception, 8(3), 1–23. https://doi.org/10.1177/2041669517708205 DOI: https://doi.org/10.1177/2041669517708205
Ortega-Contreras, J. A., Pale-Ramon, E. G., Vazquez-Olguin, M. A., Andrade-Lucio, J. A., Ibarra-Manzano, O., & Shmaliy, Y. S. (2023). Tracking a holonomic mobile robot with systematic odometry errors. 2023 International Conference on Control, Artificial Intelligence, Robotics and Optimization (ICCAIRO 2023) (pp. 99–104). IEEE. https://doi.org/10.1109/ICCAIRO58903.2023.00023 DOI: https://doi.org/10.1109/ICCAIRO58903.2023.00023
Palacín, J., Rubies, E., & Clotet, E. (2022). Systematic odometry error evaluation and correction in a human-sized three-wheeled omnidirectional mobile robot using flower-shaped calibration trajectories. Applied Sciences, 12(5), Article 2606. https://doi.org/10.3390/APP12052606 DOI: https://doi.org/10.3390/app12052606
Pantano, M., Eiband, T., & Lee, D. (2022). Capability-based frameworks for industrial robot skills: A survey. IEEE International Conference on Automation Science and Engineering (pp. 2355–2362). IEEE. https://doi.org/10.1109/CASE49997.2022.9926648 DOI: https://doi.org/10.1109/CASE49997.2022.9926648
Poma, A. L. H., Mendoza Puris, A. C., & Del Aguila Ramos, J. A. (2024). Proposal for the design of an educational robot to enhance learning and support children with attention deficit hyperactivity disorder from the fifth year of age at low cost-Nubox. 2024 4th International Conference on Robotics, Automation, and Artificial Intelligence (RAAI 2024) (pp. 11–16). IEEE. https://doi.org/10.1109/RAAI64504.2024.10949547 DOI: https://doi.org/10.1109/RAAI64504.2024.10949547
Ribeiro, C. E., Palácios, R. H. C., & Todt, E. (2024). Evaluation of the impact of educational robotics on school engagement: Educators' perspectives. 2024 Brazilian Symposium on Robotics and 2024 Workshop on Robotics in Education (SBR-WRE 2024) (pp. 255–260). IEEE. https://doi.org/10.1109/SBR/WRE63066.2024.10838106 DOI: https://doi.org/10.1109/SBR/WRE63066.2024.10838106
Samara, E., Angelidis, P., Kotsiari, A., Kilintzis, P., & Giorgos, A. (2021). Robotics in primary and secondary education - The Lego Mindstorms EV3 implementation. 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM 2021) (pp. 1-8). IEEE. https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566240 DOI: https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566240
Sapounidis, T., Tselegkaridis, S., & Stamovlasis, D. (2024). Educational robotics and STEM in primary education: A review and a meta-analysis. Journal of Research on Technology in Education, 56(4), 462–476. https://doi.org/10.1080/15391523.2022.2160394 DOI: https://doi.org/10.1080/15391523.2022.2160394
Šelek, A., Seder, M., & Petrović, I. (2023). Smooth autonomous patrolling for a differential-drive mobile robot in dynamic environments. Sensors, 23(17), Article 7421. https://doi.org/10.3390/S23177421 DOI: https://doi.org/10.3390/s23177421
Shi, Z. (2020). Identification and control of a LEGO EV3 self-balancing robot: An educational tool in automatic control classes [Master's thesis]. Politecnico di Milano.
Sigron, P., Aschwanden, I., & Bambach, M. (2023). Compensation of geometric, backlash, and thermal drift errors using a universal industrial robot model. IEEE Transactions on Automation Science and Engineering, 21(4), 6615-6627. https://doi.org/10.1109/TASE.2023.3328835 DOI: https://doi.org/10.1109/TASE.2023.3328835
Simon, J., Trojanová, M., Hošovský, A., & Sárosi, J. (2021). Neural network driven automated guided vehicle platform development for Industry 4.0 environment. Tehnicki Vjesnik - Technical Gazette, 28, 1936–1942. https://doi.org/10.17559/TV-20200727095821 DOI: https://doi.org/10.17559/TV-20200727095821
snuvclab/Vive_Tracker: Using Vive Tracker for estimating 6DOF. (n.d.). GitHub. https://github.com/snuvclab/Vive_Tracker
SteamVR. (n.d.). Steam. https://store.steampowered.com/app/250820/SteamVR/
Szczepanski, R., Erwinski, K., Tejer, M., & Daab, D. (2024). Optimal path planning algorithm with built-in velocity profiling for collaborative robot. Sensors, 24(16), Article 5332. https://doi.org/10.3390/S24165332 DOI: https://doi.org/10.3390/s24165332
Tao, L. (2023). Application market of industrial robot in China. Applied Science and Innovative Research, 7(1), 77. https://doi.org/10.22158/ASIR.V7N1P77 DOI: https://doi.org/10.22158/asir.v7n1p77
Thai, N. H., Ly, T. T. K., Hoang, T., & Dzung, L. Q. (2022). Trajectory tracking control for differential-drive mobile robot by a variable parameter PID controller. International Journal of Mechanical Engineering and Robotics Research, 11(8), 614–621. https://doi.org/10.18178/ijmerr.11.8.614-621 DOI: https://doi.org/10.18178/ijmerr.11.8.614-621
Urbano Lopes, G. B., Costa, R. R. M. S., & Alves Filho, S. E. (2024). Robot Finder v2: Search and ingestion of educational robotics data from Youtube. 2024 Brazilian Symposium on Robotics and 2024 Workshop on Robotics in Education (SBR-WRE 2024) (pp. 336–341). IEEE. https://doi.org/10.1109/SBR/WRE63066.2024.10837853 DOI: https://doi.org/10.1109/SBR/WRE63066.2024.10837853
ValveSoftware/openvr: OpenVR SDK. (n.d.). GitHub. https://github.com/ValveSoftware/openvr
Velez-Lopez, G. C., Vazquez-Leal, H., Hernandez-Martinez, L., Sarmiento-Reyes, A., Diaz-Arango, G., Huerta-Chua, J., Rico-Aniles, H. D., & Jimenez-Fernandez, V. M. (2022). A novel collision-free homotopy path planning for planar robotic arms. Sensors, 22(11), Article 4022. https://doi.org/10.3390/S22114022 DOI: https://doi.org/10.3390/s22114022
VIVE Tracker (3.0). (n.d.). VIVE European Union. https://www.vive.com/eu/accessory/tracker3/
Wongsuwan, K., & Sukvichai, K. (2015). Development of visual odometry estimation for an underwater robot navigation system. IEIE Transactions on Smart Processing & Computing, 4(4), 216–223. DOI: https://doi.org/10.5573/IEIESPC.2015.4.4.216
Xuying, B., Ping, X., & Gao, W. (2017). Calibration of systematic errors for wheeled mobile robots. International Journal of Scientific Engineering and Science, 1(9), 14–16.
Yao, W., & Cao, M. (2020). Path following control in 3D using a vector field. Automatica, 117, Article 108957. https://doi.org/10.1016/J.AUTOMATICA.2020.108957 DOI: https://doi.org/10.1016/j.automatica.2020.108957
Zruya, O., Sharon, Y., Kossowsky, H., Forni, F., Geftler, A., & Nisky, I. (2022). A new power law linking the speed to the geometry of tool-tip orientation in teleoperation of a robot-assisted surgical system. IEEE Robotics and Automation Letters, 7(4), 10762–10769. https://doi.org/10.1109/LRA.2022.3193485 DOI: https://doi.org/10.1109/LRA.2022.3193485
Article Details
Abstract views: 137
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
