Pulmonary diseases identification: Deep learning models and ensemble learning
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
kwasniewska.patrycja01@gmail.com
Abstract
Deep learning models provide tremendous support for medical imaging by understanding lung conditions and indicating multiple lung diseases. Due to the global burden of respiratory diseases, their prevention and control is of great importance. Therefore, this study focuses on the effectiveness of different deep learning architectures in diagnosing lung diseases from chest X-ray images. Five deep convolutional neural networks are involved: VGG16, DenseNet-121, ResNet-50, MobileNet, and Vision Transformers. They are pre-trained using the ImageNet dataset. Both transfer learning and development of custom models based on the above architectures will be applied. The study deals with the determination of the most effective single model for the identification of lung diseases. The gradient-weighted class activation map is used to highlight the key regions that influence model decisions. In addition, soft voting ensemble learning methods are used to improve the performance of lung disease detection. Commonly used metrics are applied to evaluate all models. The results for COVID-19, pneumonia and normal case identification exceeded 95% accuracy, 95% precision, 96% recall and 95% Fβ for individual models. The ViT model outperformed DenseNet-121, achieving 96.66% accuracy. The results for bacterial pneumonia, viral pneumonia, tuberculosis, COVID-19 and healthy case identification exceeded 85% accuracy, 86% precision, 85% recall and 94% Fβ for single models. Ensemble learning further improved performance. These results demonstrate the high potential of deep learning and ensemble approaches to support accurate and efficient diagnosis of lung diseases using chest X-rays. The deep learning models provide promising decision support tools for this type of healthcare diagnosis.
Keywords:
References
Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2021). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence, 51, 854–864. https://doi.org/10.1007/s10489-020-01829-7 DOI: https://doi.org/10.1007/s10489-020-01829-7
Abd Elaziz, M., Mabrouk, A., Dahou, A., & Chelloug, S. A. (2022). Medical image classification utilizing ensemble learning and levy flight-based honey badger algorithm on 6G-enabled internet of things. Computational Intelligence and Neuroscience, 2022(1), 5830766. https://doi.org/10.1155/2022/5830766 DOI: https://doi.org/10.1155/2022/5830766
Akter, M. S., Shahriar, H., Sneha, S., & Cuzzocrea, A. (2023). Multi-class skin cancer classification architecture based on deep convolutional neural network. 2022 IEEE International Conference on Big Data (Big Data) (pp. 5404-5413). IEEE. https://doi.org/10.1109/BigData55660.2022.10020302 DOI: https://doi.org/10.1109/BigData55660.2022.10020302
Balan, D. A., Paul, V., Nair, A. N., N, B. P., & G, R. M. L. (2024). Ensemble learning model by feature fusion from VGG16 and Resnet50 with attention mechanism for pneumonia classification. SSRN. https://doi.org/10.2139/ssrn.4853011 DOI: https://doi.org/10.2139/ssrn.4853011
Bhosale, Y. H., Patnaik, K. S., Zanwar, S. R., Singh, S. Kr., Singh, V., & Shinde, U. B. (2024). Thoracic-net: Explainable artificial intelligence (XAI) based few shots learning feature fusion technique for multi-classifying thoracic diseases using medical imaging. Multimedia Tools and Applications, 84, 5397–5433. https://doi.org/10.1007/s11042-024-20327-3 DOI: https://doi.org/10.1007/s11042-024-20327-3
Castillo-Barnes, D., Martinez-Murcia, F. J., Jimenez-Mesa, C., Arco, J. E., Salas-Gonzalez, D., Ramírez, J., & Górriz, J. M. (2023). Nonlinear weighting ensemble learning model to diagnose Parkinson’s disease using multimodal data. International Journal of Neural Systems, 33(08), 2350041. https://doi.org/10.1142/S0129065723500417 DOI: https://doi.org/10.1142/S0129065723500417
Chandra, T. B., Verma, K., Singh, B. K., Jain, D., & Netam, S. S. (2021). Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble. Expert Systems with Applications, 165, 113909. https://doi.org/10.1016/j.eswa.2020.113909 DOI: https://doi.org/10.1016/j.eswa.2020.113909
Cohen, J. P., Morrison, P., & Dao, L. (2020a). COVID-19 image data collection (Version 1). ArXiv, abs/2003.11597. https://doi.org/10.48550/ARXIV.2003.11597
Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T., & Ghassem, M. (2020b). COVID-19 image data collection: Prospective predictions are the future. Machine Learning for Biomedical Imaging, 1(December 2020), 1–38. https://doi.org/10.59275/j.melba.2020-48g7 DOI: https://doi.org/10.59275/j.melba.2020-48g7
Dalvi, O. M. D. (2022, March 26). Lungs disease dataset (4 types). IEEE DataPort.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale (Version 2). ArXiv, abs/2010.11929. https://doi.org/10.48550/ARXIV.2010.11929
Fan, C.-L. (2023). Multiscale feature extraction by using convolutional neural network: Extraction of objects from multiresolution images of urban areas. ISPRS International Journal of Geo-Information, 13(1), 5. https://doi.org/10.3390/ijgi13010005 DOI: https://doi.org/10.3390/ijgi13010005
Hadj Bouzid, A. I., Berrani, S.-A., Yahiaoui, S., Belaid, A., Belazzougui, D., Djouad, M., Bensalah, K., Belbachir, H., Naïli, Q., Abdi, M. E.-H., & Tliba, S. (2024). Deep learning-based Covid-19 diagnosis: A thorough assessment with a focus on generalization capabilities. EURASIP Journal on Image and Video Processing, 2024, 40. https://doi.org/10.1186/s13640-024-00656-x DOI: https://doi.org/10.1186/s13640-024-00656-x
Hamza, A., Attique Khan, M., Wang, S.-H., Alhaisoni, M., Alharbi, M., Hussein, H. S., Alshazly, H., Kim, Y. J., & Cha, J. (2022). COVID-19 classification using chest X-ray images based on fusion-assisted deep Bayesian optimization and Grad-CAM visualization. Frontiers in Public Health, 10, 1046296. https://doi.org/10.3389/fpubh.2022.1046296 DOI: https://doi.org/10.3389/fpubh.2022.1046296
Horry, M. J., Chakraborty, S., Paul, M., Ulhaq, A., Pradhan, B., Saha, M., & Shukla, N. (2020). COVID-19 detection through transfer learning using multimodal imaging data. IEEE Access, 8, 149808–149824. https://doi.org/10.1109/ACCESS.2020.3016780 DOI: https://doi.org/10.1109/ACCESS.2020.3016780
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications (Version 1). ArXiv, abs/1704.04861. https://doi.org/10.48550/ARXIV.1704.04861
Imam, Md. H., Nahar, N., Rahman, Md. A., & Rabbi, F. (2024). Enhancing skin cancer classification using a fusion of Densenet and Mobilenet models: A deep learning ensemble approach. Multidisciplinary Science Journal, 6(7), 2024117. https://doi.org/10.31893/multiscience.2024117 DOI: https://doi.org/10.31893/multiscience.2024117
Ismael, A. M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164, 114054. https://doi.org/10.1016/j.eswa.2020.114054 DOI: https://doi.org/10.1016/j.eswa.2020.114054
Jain, G., Mittal, D., Thakur, D., & Mittal, M. K. (2020). A deep learning approach to detect Covid-19 coronavirus with X-Ray images. Biocybernetics and Biomedical Engineering, 40(4), 1391–1405. https://doi.org/10.1016/j.bbe.2020.08.008 DOI: https://doi.org/10.1016/j.bbe.2020.08.008
Jasmine Pemeena Priyadarsini, M., Kotecha, K., Rajini, G. K., Hariharan, K., Utkarsh Raj, K., Bhargav Ram, K., Indragandhi, V., Subramaniyaswamy, V., & Pandya, S. (2023). Lung diseases detection using various deep learning algorithms. Journal of Healthcare Engineering, 2023(1), 3563696. https://doi.org/10.1155/2023/3563696 DOI: https://doi.org/10.1155/2023/3563696
Jenber Belay, A., Walle, Y. M., & Haile, M. B. (2024). Deep Ensemble learning and quantum machine learning approach for Alzheimer’s disease detection. Scientific Reports, 14, 14196. https://doi.org/10.1038/s41598-024-61452-1 DOI: https://doi.org/10.1038/s41598-024-61452-1
Jogin, M., Mohana, Madhulika, M. S., Divya, G. D., Meghana, R. K., & Apoorva, S. (2018). Feature extraction using Convolution Neural Networks (CNN) and deep learning. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 2319–2323). IEEE. https://doi.org/10.1109/RTEICT42901.2018.9012507 DOI: https://doi.org/10.1109/RTEICT42901.2018.9012507
Karczmarek, P., Dolecki, M., Powroznik, P., Galka, L., Pedrycz, W., & Czerwinski, D. (2022). Quadrature-inspired generalized choquet integral. 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–7). IEEE. https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882684 DOI: https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882684
Kesuma, L. I., Ermatita, & Erwin. (2023). ELREI: Ensemble learning of ResNet, EfficientNet, and Inception-v3 for lung disease classification based on chest X-Ray image. International Journal of Intelligent Engineering and Systems, 16(5), 149–161. https://doi.org/10.22266/ijies2023.1031.14 DOI: https://doi.org/10.22266/ijies2023.1031.14
Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine, 196, 105581. https://doi.org/10.1016/j.cmpb.2020.105581 DOI: https://doi.org/10.1016/j.cmpb.2020.105581
Kiersztyn, A., Lopucki, R., Kiersztyn, K., Karczmarek, P., Powroznik, P., Czerwinski, D., & Pedrycz, W. (2021). A comprehensive analysis of the impact of selecting the training set elements on the correctness of classification for highly variable ecological data. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–6). IEEE. https://doi.org/10.1109/FUZZ45933.2021.9494399 DOI: https://doi.org/10.1109/FUZZ45933.2021.9494399
Kong, L., & Cheng, J. (2022). Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion. Biomedical Signal Processing and Control, 77, 103772. https://doi.org/10.1016/j.bspc.2022.103772 DOI: https://doi.org/10.1016/j.bspc.2022.103772
Kumaran S, Y., Jeya, J. J., R, M. T., Khan, S. B., Alzahrani, S., & Alojail, M. (2024). Explainable lung cancer classification with ensemble transfer learning of VGG16, Resnet50 and InceptionV3 using grad-cam. BMC Medical Imaging, 24, 176. https://doi.org/10.1186/s12880-024-01345-x DOI: https://doi.org/10.1186/s12880-024-01345-x
Mabrouk, A., Díaz Redondo, R. P., Dahou, A., Abd Elaziz, M., & Kayed, M. (2022). Pneumonia detection on chest X-ray images using ensemble of deep convolutional neural networks. Applied Sciences, 12(13), 6448. https://doi.org/10.3390/app12136448 DOI: https://doi.org/10.3390/app12136448
Marques, G., Agarwal, D., & De La Torre Díez, I. (2020). Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Applied Soft Computing, 96, 106691. https://doi.org/10.1016/j.asoc.2020.106691 DOI: https://doi.org/10.1016/j.asoc.2020.106691
Marwa, A. S., & Mohammed, K. (2024). Lung infection detection via CT images and transfer learning techniques in deep learning. Journal of Advanced Research in Applied Sciences and Engineering Technology, 47(1), 206–218. https://doi.org/10.37934/araset.47.1.206218 DOI: https://doi.org/10.37934/araset.47.1.206218
Moujahid, H., Cherradi, B., Al-Sarem, M., Bahatti, L., Bakr Assedik Mohammed Yahya Eljialy, A., Alsaeedi, A., & Saeed, F. (2022). Combining CNN and Grad-Cam for COVID-19 disease prediction and visual explanation. Intelligent Automation & Soft Computing, 32(2), 723–745. https://doi.org/10.32604/iasc.2022.022179 DOI: https://doi.org/10.32604/iasc.2022.022179
Muntasir, F., Datta, A., & Mahmud, S. (2024). Interpreting multiclass lung cancer from CT scans using Grad-CAM on lightweight CNN layers. 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) (pp. 208–213). IEEE. https://doi.org/10.1109/ICEEICT62016.2024.10534491 DOI: https://doi.org/10.1109/ICEEICT62016.2024.10534491
Naik, R., Wani, T., Bajaj, S., Ahir, S., & Joshi, A. (2020). Detection of lung diseases using deep learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3568730 DOI: https://doi.org/10.2139/ssrn.3568730
Nayak, S. R., Nayak, D. R., Sinha, U., Arora, V., & Pachori, R. B. (2021). Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomedical Signal Processing and Control, 64, 102365. https://doi.org/10.1016/j.bspc.2020.102365 DOI: https://doi.org/10.1016/j.bspc.2020.102365
Odeh, A. A.-R., & Mustafa, A. (2024). Explaining transfer learning models for the detection of COVID-19 on X-ray lung images. International Journal of Electrical and Computer Engineering (IJECE), 14(4), 4542. https://doi.org/10.11591/ijece.v14i4.pp4542-4550 DOI: https://doi.org/10.11591/ijece.v14i4.pp4542-4550
Öztürk, Ş., Turalı, M. Y., & Çukur, T. (2025). HydraViT: Adaptive multi-branch transformer for multi-label disease classification from Chest X-ray images. Biomedical Signal Processing and Control, 100(Part A), 106959. https://doi.org/10.1016/j.bspc.2024.106959 DOI: https://doi.org/10.1016/j.bspc.2024.106959
Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Rajendra Acharya, U. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 103792. https://doi.org/10.1016/j.compbiomed.2020.103792 DOI: https://doi.org/10.1016/j.compbiomed.2020.103792
Panwar, H., Gupta, P. K., Siddiqui, M. K., Morales-Menendez, R., Bhardwaj, P., & Singh, V. (2020). A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images. Chaos, Solitons & Fractals, 140, 110190. https://doi.org/10.1016/j.chaos.2020.110190 DOI: https://doi.org/10.1016/j.chaos.2020.110190
Patel, P. (2019). Chest X-ray (Covid-19 & Pneumonia). Kaggle. DOI: https://doi.org/10.53347/rID-75420
Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. G. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 194, 105532. https://doi.org/10.1016/j.cmpb.2020.105532 DOI: https://doi.org/10.1016/j.cmpb.2020.105532
Powroźnik, P., Skublewska-Paszkowska, M., Nowomiejska, K., Aristidou, A., Panayides, A., & Rejdak, R. (2024). Deep convolutional generative adversarial networks in retinitis pigmentosa disease images augmentation and detection. Advances in Science and Technology Research Journal, 19(2), 321–340. https://doi.org/10.12913/22998624/196179 DOI: https://doi.org/10.12913/22998624/196179
Rahaman, M. M., Li, C., Yao, Y., Kulwa, F., Rahman, M. A., Wang, Q., Qi, S., Kong, F., Zhu, X., & Zhao, X. (2020). Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics, 28(5), 821–839. https://doi.org/10.3233/XST-200715 DOI: https://doi.org/10.3233/XST-200715
Rajaraman, S., Siegelman, J., Alderson, P. O., Folio, L. S., Folio, L. R., & Antani, S. K. (2020). Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-Rays. IEEE Access, 8, 115041–115050. https://doi.org/10.1109/ACCESS.2020.3003810 DOI: https://doi.org/10.1109/ACCESS.2020.3003810
Rajpoot, R., Gour, M., Jain, S., & Semwal, V. B. (2024). Integrated ensemble CNN and explainable AI for COVID-19 diagnosis from CT scan and X-ray images. Scientific Reports, 14, 24985. https://doi.org/10.1038/s41598-024-75915-y DOI: https://doi.org/10.1038/s41598-024-75915-y
Sharma, V., Nillmani, Gupta, S. K., & Shukla, K. K. (2024). Deep learning models for tuberculosis detection and infected region visualization in chest X-ray images. Intelligent Medicine, 4(2), 104–113. https://doi.org/10.1016/j.imed.2023.06.001 DOI: https://doi.org/10.1016/j.imed.2023.06.001
Shaziya, H. (2022). Explainable deep learning through Grad-CAM and feature visualization for the detection of COVID-19 in chest X-ray images. In M. A. Chaurasia & S. Mozar (Eds.), Contactless Healthcare Facilitation and Commodity Delivery Management During COVID 19 Pandemic (pp. 27–34). Springer Singapore. https://doi.org/10.1007/978-981-16-5411-4_4 DOI: https://doi.org/10.1007/978-981-16-5411-4_4
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition (Version 6). ArXiv, abs/1409.1556. https://doi.org/10.48550/ARXIV.1409.1556
Sitaula, C., & Hossain, M. B. (2021). Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Applied Intelligence, 51, 2850–2863. https://doi.org/10.1007/s10489-020-02055-x DOI: https://doi.org/10.1007/s10489-020-02055-x
Skublewska-Paszkowska, M., Karczmarek, P., Powroznik, P., Lukasik, E., Smolka, J., & Dolecki, M. (2023). Aggregation of tennis multivariate time-series using the choquet integral and its generalizations. 2023 IEEE International Conference on Fuzzy Systems (FUZZ) (pp. 1–6). IEEE. https://doi.org/10.1109/FUZZ52849.2023.10309746 DOI: https://doi.org/10.1109/FUZZ52849.2023.10309746
Skublewska-Paszkowska, M., Powroznik, P., Lukasik, E., & Smolka, J. (2024). Tennis patterns recognition based on a novel tennis dataset – 3DTennisDS. Advances in Science and Technology Research Journal, 18(6), 159–176. https://doi.org/10.12913/22998624/191264 DOI: https://doi.org/10.12913/22998624/191264
Sriporn, K., Tsai, C.-F., Tsai, C.-E., & Wang, P. (2020). Analyzing lung disease using highly effective deep learning techniques. Healthcare, 8(2), 107. https://doi.org/10.3390/healthcare8020107 DOI: https://doi.org/10.3390/healthcare8020107
Tabik, S., Gomez-Rios, A., Martin-Rodriguez, J. L., Sevillano-Garcia, I., Rey-Area, M., Charte, D., Guirado, E., Suarez, J. L., Luengo, J., Valero-Gonzalez, M. A., Garcia-Villanova, P., Olmedo-Sanchez, E., & Herrera, F. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on xhest X-Ray images. IEEE Journal of Biomedical and Health Informatics, 24(12), 3595–3605. https://doi.org/10.1109/JBHI.2020.3037127 DOI: https://doi.org/10.1109/JBHI.2020.3037127
Taha Ahmed, S., & Malallah Kadhem, S. (2021). Using machine learning via deep learning algorithms to diagnose the lung disease based on chest imaging: A survey. International Journal of Interactive Mobile Technologies, 15(16), 95. https://doi.org/10.3991/ijim.v15i16.24191 DOI: https://doi.org/10.3991/ijim.v15i16.24191
Toğaçar, M., Ergen, B., & Cömert, Z. (2020). COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Computers in Biology and Medicine, 121, 103805. https://doi.org/10.1016/j.compbiomed.2020.103805 DOI: https://doi.org/10.1016/j.compbiomed.2020.103805
Umair, M., Khan, M. S., Ahmed, F., Baothman, F., Alqahtani, F., Alian, M., & Ahmad, J. (2021). Detection of COVID-19 using transfer learning and Grad-CAM visualization on indigenously collected X-ray dataset. Sensors, 21(17), 5813. https://doi.org/10.3390/s21175813 DOI: https://doi.org/10.3390/s21175813
Vignesh Kumaran, N., & Preethi, D. M. D. (2025). Intelligent decision support system for lung cancer classification with ensemble inference system using fuzzy. Biomedical Signal Processing and Control, 108, 107958. https://doi.org/10.1016/j.bspc.2025.107958 DOI: https://doi.org/10.1016/j.bspc.2025.107958
Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., & Pinheiro, P. R. (2020). CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access, 8, 91916–91923. https://doi.org/10.1109/ACCESS.2020.2994762 DOI: https://doi.org/10.1109/ACCESS.2020.2994762
Yu, W., Zhou, H., Goldin, J. G., Wong, W. K., & Kim, G. H. J. (2021). End‐to‐end domain knowledge‐assisted automatic diagnosis of idiopathic pulmonary fibrosis (IPF) using computed tomography (CT). Medical Physics, 48(5), 2458–2467. https://doi.org/10.1002/mp.14754 DOI: https://doi.org/10.1002/mp.14754
Article Details
Abstract views: 155
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
