Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
nadjemeddine.menaceur@univ-oeb.dz
Abstract
Accurate and interpretable arrhythmia detection is essential for timely diagnosis and intervention, particularly in Medical Decision Support Systems (MDSS). Fuzzy logic, known for its ability to handle uncertainty and enhance interpretability, has emerged as a promising approach. This systematic literature review (SLR) investigates the role of fuzzy logic in advancing arrhythmia detection, focusing on accuracy, interpretability, and integration with computational intelligence. Following the PRISMA guidelines, 13 studies published between 2019 and 2024 were analysed to address four key questions: (Q1) the accuracy and reliability of fuzzy logic systems, (Q2) the effectiveness of hybrid systems combining fuzzy logic with computational intelligence, (Q3) the challenges in developing multi-class fuzzy logic systems, and (Q4) the impact of fuzzy logic on interpretability in MDSS. Techniques such as Adaptive Neural Fuzzy Inference Systems (ANFIS) and hybrid models with neural networks and bio-inspired algorithms were evaluated. ANFIS demonstrated near-perfect accuracy, while hybrid systems enhanced scalability and addressed multi-class classification challenges. Limitations included reliance on benchmark datasets, limited real-world validation, and insufficient focus on explainable artificial intelligence (XAI). Fuzzy logic shows strong potential for developing interpretable and robust MDSS for arrhythmia detection. Future research should prioritise advancing XAI, incorporating diverse datasets, and addressing real-world challenges to improve clinical applicability.
Keywords:
References
Abagaro, A. M., Barki, H., Ayana, G., Dawud, A. A., Thamineni, B. L., Jemal, T., & Choe, S. (2024). Automated ECG signals analysis for cardiac abnormality detection and classification. Journal of Electrical Engineering & Technology, 19(5), 3355–3371. https://doi.org/10.1007/s42835-024-01902-y DOI: https://doi.org/10.1007/s42835-024-01902-y
Ahmadi, H., Gholamzadeh, M., Shahmoradi, L., Nilashi, M., & Rashvand, P. (2018). Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review. Computer Methods and Programs in Biomedicine, 161, 145–172. https://doi.org/10.1016/j.cmpb.2018.04.013 DOI: https://doi.org/10.1016/j.cmpb.2018.04.013
Al-Naami, B., Fraihat, H., Owida, H. A., Al-Hamad, K., De Fazio, R., & Visconti, P. (2022). Automated detection of left bundle branch block from ECG signal utilizing the maximal overlap discrete wavelet transform with ANFIS. Computers, 11(6), 93. https://doi.org/10.3390/computers11060093 DOI: https://doi.org/10.3390/computers11060093
Alshahrani, H., Alshahrani, A., Karar, M. E., & Ramadan, E. A. (2024). Intuitionistic fuzzy biofeedback control of implanted dual-sensor cardiac pacemakers. Bioengineering, 11(7), 691. https://doi.org/10.3390/bioengineering11070691 DOI: https://doi.org/10.3390/bioengineering11070691
Ansari, Y., Mourad, O., Qaraqe, K., & Serpedin, E. (2023). Deep learning for ECG Arrhythmia detection and classification: An overview of progress for period 2017–2023. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1246746 DOI: https://doi.org/10.3389/fphys.2023.1246746
Ardeti, V. A., Kolluru, V. R., Varghese, G. T., & Patjoshi, R. K. (2023). An overview on state-of-the-art electrocardiogram signal processing methods: Traditional to AI-based approaches. Expert Systems with Applications, 217, 119561. https://doi.org/10.1016/j.eswa.2023.119561 DOI: https://doi.org/10.1016/j.eswa.2023.119561
Arief Kanza, R., Udin Harun Al Rasyid, M., & Sukaridhoto, S. (2024). Efficient early detection of patient diagnosis and cardiovascular disease using an IoT system with machine learning and fuzzy logic. International Journal of Computing and Digital Systems, 15(1), 183–199. https://doi.org/10.12785/ijcds/160115 DOI: https://doi.org/10.12785/ijcds/160115
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 DOI: https://doi.org/10.1016/S0165-0114(86)80034-3
Badhon, B., Chakrabortty, R. K., Anavatti, S. G., & Vanhoucke, M. (2025). A multi-module explainable artificial intelligence framework for project risk management: Enhancing transparency in decision-making. Engineering Applications of Artificial Intelligence, 148, 110427. https://doi.org/10.1016/j.engappai.2025.110427 DOI: https://doi.org/10.1016/j.engappai.2025.110427
Basu, A., & Chaudhury, C. L. (2025). An introduction to fuzzy logic in real time application paradigm. In S. Jana, B. Basu Mallik, A. Sarkar, & C. Jana (Eds.), Applications of Fuzzy Logic in Decision Making and Management Science (pp. 1–18). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-77719-6_1 DOI: https://doi.org/10.1007/978-3-031-77719-6_1
Bousseljot, R.-D., Kreiseler, D., & Schnabel, A. (2004). The PTB Diagnostic ECG Database [Dataset]. physionet.org. https://doi.org/10.13026/C28C71
Cao, J., Zhou, T., Zhi, S., Lam, S., Ren, G., Zhang, Y., Wang, Y., Dong, Y., & Cai, J. (2024). Fuzzy inference system with interpretable fuzzy rules: Advancing explainable artificial intelligence for disease diagnosis - A comprehensive review. Information Sciences, 662, 120212. https://doi.org/10.1016/j.ins.2024.120212 DOI: https://doi.org/10.1016/j.ins.2024.120212
Chen, H., Das, S., Morgan, J. M., & Maharatna, K. (2022). Prediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clustering. Computers in Biology and Medicine, 142, 105180. https://doi.org/10.1016/j.compbiomed.2021.105180 DOI: https://doi.org/10.1016/j.compbiomed.2021.105180
Chen, X., Leung, Y.-L. A., & Shen, J. (2022). Artificial intelligence and its application for cardiovascular diseases in Chinese medicine. Digital Chinese Medicine, 5(4), 367–376. https://doi.org/10.1016/j.dcmed.2022.12.003 DOI: https://doi.org/10.1016/j.dcmed.2022.12.003
Corona-Figueroa, A. (2019). A portable prototype for diagnosing fetal arrhythmia. Informatics in Medicine Unlocked, 17, 100268. https://doi.org/10.1016/j.imu.2019.100268 DOI: https://doi.org/10.1016/j.imu.2019.100268
Farhan, A., Wei, C. L., & Ahmed, M. T. (2018). A qualitative overview of fuzzy logic in ECG arrhythmia classification. International Journal of Engineering Works, 5(11). https://doi.org/10.5281/zenodo.1486134
Fu, D. (2015). Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochemistry and Biophysics, 73(2), 291–296. https://doi.org/10.1007/s12013-015-0626-4 DOI: https://doi.org/10.1007/s12013-015-0626-4
Garikapati, K., Turnbull, S., Bennett, R. G., Campbell, T. G., Kanawati, J., Wong, M. S., Thomas, S. P., Chow, C. K., & Kumar, S. (2022). The role of contemporary wearable and handheld devices in the diagnosis and management of cardiac arrhythmias. Heart, Lung and Circulation, 31(11), 1432–1449. https://doi.org/10.1016/j.hlc.2022.08.001 DOI: https://doi.org/10.1016/j.hlc.2022.08.001
Goktas, P., & Grzybowski, A. (2025). Shaping the future of healthcare: ethical clinical challenges and pathways to trustworthy AI. Journal of Clinical Medicine, 14(5). https://doi.org/10.3390/jcm14051605 DOI: https://doi.org/10.3390/jcm14051605
Gupta, U., Paluru, N., Nankani, D., Kulkarni, K., & Awasthi, N. (2024). A comprehensive review on efficient artificial intelligence models for classification of abnormal cardiac rhythms using electrocardiograms. Heliyon, 10(5), e26787. https://doi.org/10.1016/j.heliyon.2024.e26787 DOI: https://doi.org/10.1016/j.heliyon.2024.e26787
Huang, W., Zhang, Y., & Wan, S. (2022). A sorting fuzzy min-max model in an embedded system for atrial fibrillation detection. ACM Transactions on Multimedia Computing, Communications, and Applications, 18(2s), 126. https://doi.org/10.1145/3554737 DOI: https://doi.org/10.1145/3554737
Huang, Z., MacLachlan, S., Yu, L., Herbozo Contreras, L. F., Truong, N. D., Ribeiro, A. H., & Kavehei, O. (2024). Generalization challenges in electrocardiogram deep learning: Insights from dataset characteristics and attention mechanism. Future Cardiology, 20(4), 209–220. https://doi.org/10.1080/14796678.2024.2354082 DOI: https://doi.org/10.1080/14796678.2024.2354082
Iancu, I., Gabroveanu, M., & Cosulschi, M. (2013). Intuitionistic fuzzy control based on association rules. In C. Bǎdicǎ, N. T. Nguyen, & M. Brezovan (Eds.), Computational Collective Intelligence. Technologies and Applications (pp. 235–244). Springer. https://doi.org/10.1007/978-3-642-40495-5_24 DOI: https://doi.org/10.1007/978-3-642-40495-5_24
Imburgio, S., Johal, A., Akhlaq, H., Klei, L., Arcidiacono, A. M., Udongwo, N., Mararenko, A., Ajam, F., Heaton, J., Hansalia, R., & Zagha, D. (2024). Fatal ventricular arrhythmias in myocarditis: A review of current indications for defibrillator devices. Journal of Cardiology, 84(3), 151–154. https://doi.org/10.1016/j.jjcc.2024.03.007 DOI: https://doi.org/10.1016/j.jjcc.2024.03.007
Jamthikar, A., Gupta, D., Johri, A. M., Mantella, L. E., Saba, L., & Suri, J. S. (2022). A machine learning framework for risk prediction of multi-label cardiovascular events based on focused carotid plaque B-Mode ultrasound: A Canadian study. Computers in Biology and Medicine, 140, 105102. https://doi.org/10.1016/j.compbiomed.2021.105102 DOI: https://doi.org/10.1016/j.compbiomed.2021.105102
Kouah Sofia, S. D.-E. (2017). Fuzzy labeled transition refinement tree: application to stepwise designing multi agent systems. In I. Management Association (Ed.), Fuzzy Systems: Concepts, Methodologies, Tools, and Applications (pp. 873-905). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-5225-1908-9.ch039 DOI: https://doi.org/10.4018/978-1-5225-1908-9.ch039
Krittanawong, C., Isath, A., Kaplin, S., Virk, H. U. H., Fogg, S., Wang, Z., Shepanek, M., Scheuring, R. A., & Lavie, C. J. (2023). Cardiovascular disease in space: A systematic review. Progress in Cardiovascular Diseases, 81, 33–41. https://doi.org/10.1016/j.pcad.2023.07.009 DOI: https://doi.org/10.1016/j.pcad.2023.07.009
Lakshmi Devi, R., Kalaivani, V., & Velammal, B. L. (2021). Adaptive neuro-fuzzy inference healthcare system for cardiac arrhythmia detection using heart rate variability features. In V. L. N. Komanapalli, N. Sivakumaran, & S. Hampannavar (Eds.), Advances in Automation, Signal Processing, Instrumentation, and Control (pp. 2167–2174). Springer Nature. https://doi.org/10.1007/978-981-15-8221-9_201 DOI: https://doi.org/10.1007/978-981-15-8221-9_201
Le, K. H., Pham, H. H., Nguyen, T. B. T., Nguyen, T. A., Thanh, T. N., & Do, C. D. (2023). LightX3ECG: A lightweight and eXplainable deep learning system for 3-lead electrocardiogram classification. Biomedical Signal Processing and Control, 85, 104963. https://doi.org/10.1016/j.bspc.2023.104963 DOI: https://doi.org/10.1016/j.bspc.2023.104963
Li, J., Jhang, J.-Y., Lin, C.-J., & Lin, X.-Q. (2022). Arrhythmia detection using a taguchi-based convolutional neuro-fuzzy network. Sensors and Materials, 34(7), 2853. https://doi.org/10.18494/SAM3924 DOI: https://doi.org/10.18494/SAM3924
Lin, S.-S., Song, J.-H., Zhu, K.-Y., Liu, Y.-C., & Chang, H.-C. (2023). Applying adaptive neuro-fuzzy inference system to improve typhoon intensity forecast in the Northwest Pacific. Water, 15(15), Article 15. https://doi.org/10.3390/w15152855 DOI: https://doi.org/10.3390/w15152855
Madhura, M., Asha, K. S., Mary, C. T., Anubhav, B., Rajat, S., & Sameen, A. Z. (2024). An effective internet of things based assessment of ANN and ANFIS algorithms for cardiac arrhythmia. Journal of Intelligent Systems and Internet of Things, 13(1), 99–110. https://doi.org/10.54216/JISIoT.130108 DOI: https://doi.org/10.54216/JISIoT.130108
Madinatou, A. B. and S. (2019). Amelioration of cardiac arrhythmias classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. International Journal of Healthcare Systems Engineering, 1(1). DOI: https://doi.org/10.35840/2633-8939/7202
Mandal, S., Roy, A. H., & Mondal, P. (2021). Automated detection of fibrillations and flutters based on fused feature set and ANFIS classifier. Biomedical Signal Processing and Control, 69, 102834. https://doi.org/10.1016/j.bspc.2021.102834 DOI: https://doi.org/10.1016/j.bspc.2021.102834
Mastacan, L., & Dosoftei, C.-C. (2018). Temperature fuzzy control system with Mamdani controller. 2018 International Conference and Exposition on Electrical And Power Engineering (EPE) (pp. 0352–0356). IEEE. https://doi.org/10.1109/ICEPE.2018.8559861 DOI: https://doi.org/10.1109/ICEPE.2018.8559861
Menaceur, N. E., Kouah, S., & Derdour, M. (2023). IoT-based Intelligent medical decision support system for cardiovascular diseases. In K. Kabassi, P. Mylonas, & J. Caro (Eds.), Novel & Intelligent Digital Systems: Proceedings of the 3rd International Conference (NiDS 2023) (pp. 122–126). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44146-2_12 DOI: https://doi.org/10.1007/978-3-031-44146-2_12
Menaceur, N. E., Kouah, S., & Derdour, M. (2024). Adaptive filtering strategies for ECG signal enhancement: A comparative study. 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS) (pp. 1–6). IEEE. https://doi.org/10.1109/PAIS62114.2024.10541144 DOI: https://doi.org/10.1109/PAIS62114.2024.10541144
Mendel, J. M., & Bonissone, P. P. (2021). Critical thinking about explainable AI (XAI) for rule-based fuzzy systems. IEEE Transactions on Fuzzy Systems, 29(12), 3579–3593. https://doi.org/10.1109/TFUZZ.2021.3079503 DOI: https://doi.org/10.1109/TFUZZ.2021.3079503
Moody, G. B., & Mark, R. G. (1992). MIT-BIH Arrhythmia Database [Dataset]. physionet.org. https://doi.org/10.13026/C2F305
Moreno-Sánchez, P. A., García-Isla, G., Corino, V. D. A., Vehkaoja, A., Brukamp, K., van Gils, M., & Mainardi, L. (2024). ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Computers in Biology and Medicine, 172, 108235. https://doi.org/10.1016/j.compbiomed.2024.108235 DOI: https://doi.org/10.1016/j.compbiomed.2024.108235
Mújica-Vargas, D., Vela-Rincón, V. V., Luna-Álvarez, A., & Arenas Muñiz, A. A. (2024). Intuitionistic fuzzy recurrence plots for classifying cardiac arrhythmias using deep learning. Programming and Computer Software, 50(8), 662–673. https://doi.org/10.1134/S0361768824700683 DOI: https://doi.org/10.1134/S0361768824700683
National Heart, Lung, and Blood Institute. (2022, March 24). Arrhythmias - Types. https://www.nhlbi.nih.gov/health/arrhythmias/types
Onyelowe, K. C., Shakeri, J., Amini-Khoshalann, H., Salahudeen, A. B., Arinze, E. E., & Ugwu, H. U. (2021). Application of ANFIS hybrids to predict coefficients of curvature and uniformity of treated unsaturated lateritic soil for sustainable earthworks. Cleaner Materials, 1, 100005. https://doi.org/10.1016/j.clema.2021.100005 DOI: https://doi.org/10.1016/j.clema.2021.100005
Opoku Agyeman, M., Guerrero, A. F., & Vien, Q.-T. (2022). Classification techniques for arrhythmia patterns using convolutional neural networks and internet of things (IoT) devices. IEEE Access, 10, 87387–87403. https://doi.org/10.1109/ACCESS.2022.3192390 DOI: https://doi.org/10.1109/ACCESS.2022.3192390
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Premalatha, P., Shilpa, N., Vijayalakshmi, S., Paramasivam, A., Pittu, P. S. K. R., Kamatchi, S., Jayashankar, H., & Swamynathan, K. (2024). A novel method for detecting cardiac arrhythmias in electrocardiogram signals using the ANFIS classifier. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 9, 100734. https://doi.org/10.1016/j.prime.2024.100734 DOI: https://doi.org/10.1016/j.prime.2024.100734
Rahman, M. Z., Akbar, M. A., Leiva, V., Tahir, A., Riaz, M. T., & Martin-Barreiro, C. (2023). An intelligent health monitoring and diagnosis system based on the internet of things and fuzzy logic for cardiac arrhythmia COVID-19 patients. Computers in Biology and Medicine, 154, 106583. https://doi.org/10.1016/j.compbiomed.2023.106583 DOI: https://doi.org/10.1016/j.compbiomed.2023.106583
Ramirez, E., Melin, P., & Prado-Arechiga, G. (2019). Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification. Expert Systems with Applications, 126, 295–307. https://doi.org/10.1016/j.eswa.2019.02.035 DOI: https://doi.org/10.1016/j.eswa.2019.02.035
Ratnaparkhi, A., Deshpande, P., & Ghule, G. (2021). A framework for segmentation and classification of arrhythmia using novel bidirectional LSTM network. International Journal of Computing and Digital Systems, 10. https://doi.org/10.12785/ijcds/100178 DOI: https://doi.org/10.12785/ijcds/100178
Rizvi, S., Mitchell, J., Razaque, A., Rizvi, M. R., & Williams, I. (2020). A fuzzy inference system (FIS) to evaluate the security readiness of cloud service providers. Journal of Cloud Computing, 9(1), 42. https://doi.org/10.1186/s13677-020-00192-9 DOI: https://doi.org/10.1186/s13677-020-00192-9
Sahoo, S., Dash, M., Behera, S., & Sabut, S. (2020). Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. IRBM, 41(4), 185–194. https://doi.org/10.1016/j.irbm.2019.12.001 DOI: https://doi.org/10.1016/j.irbm.2019.12.001
Srinivasan, N. T., & Schilling, R. J. (2018). Sudden cardiac death and arrhythmias. Arrhythmia & Electrophysiology Review, 7(2), 111–117. https://doi.org/10.15420/aer.2018:15:2 DOI: https://doi.org/10.15420/aer.2018:15:2
Swetha, R., & Ramakrishnan, S. (2021). K-means Clustering optimized fuzzy logic control algorithm for arrhythmia classification. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) (pp. 1–7). IEEE. https://doi.org/10.1109/ICAECT49130.2021.9392494 DOI: https://doi.org/10.1109/ICAECT49130.2021.9392494
Taher, F., Alshammari, H., Osman, L., Elhoseny, M., Shehab, A., & Elayat, E. (2023). Cardiac arrhythmia disease classifier model based on a fuzzy fusion approach. Computers, Materials & Continua, 75(2), 4485–4499. https://doi.org/10.32604/cmc.2023.036118 DOI: https://doi.org/10.32604/cmc.2023.036118
Vásquez-Iturralde, F., Flores-Calero, M., Grijalva-Arévalo, F., & Rosales-Acosta, A. (2024). Automatic classification of cardiac arrhythmias using deep learning techniques: A systematic review. IEEE Access, 12, 118467–118492. https://doi.org/10.1109/ACCESS.2024.3408282 DOI: https://doi.org/10.1109/ACCESS.2024.3408282
Vila, M., Rivolta, M. W., Luongo, G., Unger, L. A., Luik, A., Gigli, L., Lombardi, F., Loewe, A., & Sassi, R. (2021). Atrial flutter mechanism detection using directed network mapping. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.749635 DOI: https://doi.org/10.3389/fphys.2021.749635
Waseem, Z., Haq, Z. A., & Mahto, A. K. (2023). Heart arrhythmia detection based on ECG wave classification using neural network and Fuzzy Inference system. Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing (pp. 51–57). Association for Computing Machinery. https://doi.org/10.1145/3607947.3607960 DOI: https://doi.org/10.1145/3607947.3607960
World Heart Federation. (n.d.). Welcome to the World Heart Federation. Retrieved May 8, 2024, from https://world-heart-federation.org/
Xiao, Q., Lee, K., Mokhtar, S. A., Ismail, I., Pauzi, A. L. bin M., Zhang, Q., & Lim, P. Y. (2023). Deep learning-based ECG arrhythmia classification: A systematic review. Applied Sciences, 13(8), 4964. https://doi.org/10.3390/app13084964 DOI: https://doi.org/10.3390/app13084964
Xing, L., Li, X., Liu, W., & Wang, X. (2024). A fuzzy-operated convolutional autoencoder for classification of wearable device-collected electrocardiogram. IEEE Transactions on Fuzzy Systems, 33(1), 267-277. https://doi.org/10.1109/TFUZZ.2024.3388023 DOI: https://doi.org/10.1109/TFUZZ.2024.3388023
Ying, H. (1998). The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica, 34(2), 157–167. https://doi.org/10.1016/S0005-1098(97)00173-8 DOI: https://doi.org/10.1016/S0005-1098(97)00173-8
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 DOI: https://doi.org/10.1016/0020-0255(75)90036-5
Zhang, Y., & Qin, C. (2022). A Gaussian-shaped fuzzy inference system for multi-source fuzzy data. Systems, 10(6), 258. https://doi.org/10.3390/systems10060258 DOI: https://doi.org/10.3390/systems10060258
Zotero | Your personal research assistant. (n.d.). Retrieved April 19, 2024, from https://www.zotero.org/
Article Details
Abstract views: 220
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
