Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Wireless Body Area Networks (WBANs) are one of the emerging technologies in the healthcare landscape. It enables the non-invasive collection of physiological data to continuously measure health indicators using a network of miniaturized sensors placed on or under the human body. This paper explores a comprehensive study of WBANs, covering all the basic concepts, including their background information and motivation for development, as well as requirements and issues related to their application scenarios and future directions. The paper elaborates on the exclusive characteristics of WBANs compared to Wireless Sensor Networks. It describes health monitoring requirements and energy efficiency challenges with security and biocompatibility as guidelines for comparison. In addition, the paper also highlights various WBAN communication technologies and their relevance in diverse medical and non-medical domains. This paper identifies the critical comprehensive analysis of interference dynamics and mitigation strategies that remain absent in the literature, along with an exhaustive review of the literature. The research shows that WBANs could have a significant impact on healthcare and other industries, while discussing the technical and ethical hurdles to their wider application.
Keywords:
References
Abderrahmane, T., Nourredine, A., & Mohammed, T. (2024). Experimental analysis for comparison of wireless transmission technologies: Wi-Fi, Bluetooth, ZigBee and LoRa for mobile multi-robot in hostile sites. International Journal of Electrical & Computer Engineering, 14(3). http://doi.org/10.11591/ijece.v14i3.pp2753-2761 DOI: https://doi.org/10.11591/ijece.v14i3.pp2753-2761
Abdulmalek, S., Nasir, A., Jabbar, W. A., Almuhaya, M. A., Bairagi, A. K., Khan, M. A.-M., & Kee, S.-H. (2022). IoT-based healthcare-monitoring system towards improving quality of life: A review. Healthcare, 10(10), 1993. https://doi.org/10.3390/healthcare10101993 DOI: https://doi.org/10.3390/healthcare10101993
Abououf, M., Singh, S., Mizouni, R., & Otrok, H. (2023). Explainable AI for event and anomaly detection and classification in healthcare monitoring systems. IEEE Internet of Things Journal, 11(2), 3446-3457. https://doi.org/ 10.1109/JIOT.2023.3296809 DOI: https://doi.org/10.1109/JIOT.2023.3296809
Ahmed, N., De, D., Barbhuiya, F. A., & Hussain, M. I. (2021). MAC protocols for IEEE 802.11 ah-based internet of things: A survey. IEEE Internet of Things Journal, 9(2), 916-938. https://doi.org/10.1109/JIOT.2021.3104388 DOI: https://doi.org/10.1109/JIOT.2021.3104388
Akbar, M. S., Hussain, Z., Sheng, M., & Shankaran, R. (2022). Wireless body area sensor networks: Survey of mac and routing protocols for patient monitoring under IEEE 802.15.4 and IEEE 802.15.6. Sensors, 22(21), 8279. https://doi.org/10.3390/s22218279 DOI: https://doi.org/10.3390/s22218279
Al-Barazanchi, I., Abdulshaheed, H. R., & Sidek, M. S. B. (2019). A Survey: Issues and challenges of communication technologies in WBAN. Sustainable Engineering and Innovation, 1(2), 84-97. https://doi.org/10.37868/sei.v1i2.85 DOI: https://doi.org/10.37868/sei.v1i2.85
Al-Sofi, S. J., Atroshey, S. M. S., & Ali, I. A. (2023). Review of wireless body area networks: protocols, technologies, and applications. Bulletin of Electrical Engineering and Informatics, 12(6), 3677-3689. https://doi.org/10.11591/eei.v12i6.5543 DOI: https://doi.org/10.11591/eei.v12i6.5543
Al-Thobhani, N. G (2022). Implementation wearable WBANs for e-Healthcare. https://doi.org/ 10.13140/RG.2.2.15354.57286/1
Al Barazanchi, I. I., Hashim, W., Thabit, R., Sekhar, R., Shah, P., & Penubadi, H. R. (2024). Secure trust node acquisition and access control for privacy-preserving expertise trust in WBAN networks. International Conference on Forthcoming Networks and Sustainability in the AIoT Era (pp. 265-275). Springer Nature. https://doi.org/10.1007/978-3-031-62881-8_22 DOI: https://doi.org/10.1007/978-3-031-62881-8_22
Alejandrino, J., Concepcion, R., Palconit, M. G., Dadios, E., Bandala, A., & Vicerra, R. R. (2021). Irescue: Tracking device using RuBee–based Technology. 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (pp. 1-6). IEEE. https://doi.org/10.1109/HNICEM54116.2021.9732045 DOI: https://doi.org/10.1109/HNICEM54116.2021.9732045
Alhawari, A. R., Almawgani, A., Hindi, A. T., Alghamdi, H., & Saeidi, T. (2021). Metamaterial-based wearable flexible elliptical UWB antenna for WBAN and breast imaging applications. AIP Advances, 11(1), 015128. https://doi.org/10.1063/5.0037232 DOI: https://doi.org/10.1063/5.0037232
A reliable energy-efficient routing algorithm for WBAN using centrality measure. (2024). In S. Ameen, G. Ahmed, R. S. Malik, S. Siddiqui, M. K. Kamal, & A. Akhunzada, Innovation and Technological Advances for Sustainability (1st ed., pp. 309–321). CRC Press. https://doi.org/10.1201/9781003496724-30 DOI: https://doi.org/10.1201/9781003496724-30
Anbarasan, H. S., & Natarajan, J. (2022). Blockchain Based delay and energy harvest aware healthcare monitoring system in WBAN environment. Sensors, 22(15), 5763. https://doi.org/10.3390/s22155763 DOI: https://doi.org/10.3390/s22155763
Anitha, P., & Priya, R. (2024). A novel wireless secure body area network layer protocol for secured patient data transmission. 5th International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 557-564). IEEE. https://doi.org/10.3390/s22155763 DOI: https://doi.org/10.1109/ICESC60852.2024.10690035
Arnaoutoglou, D. G., Empliouk, T. M., Kaifas, T. N., Chryssomallis, M. T., & Kyriacou, G. (2024). A review of multifunctional antenna designs for internet of things. Electronics, 13(16), 3200. https://doi.org/10.3390/electronics13163200 DOI: https://doi.org/10.3390/electronics13163200
Ar-Reyouchi, E. M., Ghoumid, K., Yahiaoui, R., & Elmazria, O. (2022). Optimized reception sensitivity of WBAN sensors exploiting network coding and modulation techniques in an advanced NB-IoT. IEEE Access, 10, 35784-35794. https://doi.org/10.1109/ACCESS.2022.3163314 DOI: https://doi.org/10.1109/ACCESS.2022.3163314
Arshad, J., Irtisam, A., Arif, T., Rasheed, M. S., Chauhdary, S. T., Rahmani, M. K. I., & Almajalid, R. (2024). A federated learning model for intelligent cattle health monitoring system using body area sensors and IoT. Egyptian Informatics Journal, 27, 100488. https://doi.org/10.1016/j.eij.2024.100488 DOI: https://doi.org/10.1016/j.eij.2024.100488
Artetxe, E., Barambones, O., Calvo, I., Fernández-Bustamante, P., Martin, I., & Uralde, J. (2023). Wireless technologies for industry 4.0 applications. Energies, 16(3), 1349. https://doi.org/10.3390/en16031349 DOI: https://doi.org/10.3390/en16031349
Ayyub, Q. (2023). Wireless Body Area Network (WBAN) based health care monitoring: A comprehensive review. Sir Syed University Research Journal of Engineering & Technology, 13(2), 85-90. DOI: https://doi.org/10.33317/ssurj.490
Batista, E., Moncusi, M. A., López-Aguilar, P., Martínez-Ballesté, A., & Solanas, A. (2021). Sensors for context-aware smart healthcare: A security perspective. Sensors, 21(20), 6886. https://doi.org/10.3390/s21206886 DOI: https://doi.org/10.3390/s21206886
Bhatti, D. S., Saleem, S., Imran, A., Iqbal, Z., Alzahrani, A., Kim, H., & Kim, K.-I. (2022). A survey on wireless wearable body area networks: A perspective of technology and economy. Sensors, 22(20), 7722. https://doi.org/10.3390/s22207722 DOI: https://doi.org/10.3390/s22207722
Bouhassoune, I., Saadane, R., & Chehri, A. (2019). Wireless body area network based on RFID system for healthcare monitoring: Progress and architectures. 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) (pp. 416-421). IEEE. https://doi.org/10.1109/SITIS.2019.00073 DOI: https://doi.org/10.1109/SITIS.2019.00073
Bouldjadj, S. (2022). Thermal aware routing protocols for wireless body area networks: Review and open research issues. Karbala International Journal of Modern Science, 8(3), 356-374. https://doi.org/10.33640/2405-609X.3244 DOI: https://doi.org/10.33640/2405-609X.3244
Chaudhari, S., Aradhya, S. N., Thomas, S. B., Pandey, S., & Durbha, R. P. (2022). A survey on game theory based interference mitigation in WBASN. International Journal of Sensors Wireless Communications and Control, 12(2), 108-121. https://doi.org/10.2174/2210327911666210120120946 DOI: https://doi.org/10.2174/2210327911666210120120946
Chen, D.-R. (2024). Integrating IoT in WBANs: An energy-efficient and QoS-aware approach for rapid model-driven transmission power control and link adaptation. Internet of Things, 25, 101091. https://doi.org/10.1016/j.iot.2024.101091 DOI: https://doi.org/10.1016/j.iot.2024.101091
Chilamkurthy, N. S., Pandey, O. J., Ghosh, A., Cenkeramaddi, L. R., & Dai, H.-N. (2022). Low-power wide-area networks: A broad overview of its different aspects. IEEE Access, 10, 81926-81959. https://doi.org/10.1109/ACCESS.2022.3196182 DOI: https://doi.org/10.1109/ACCESS.2022.3196182
Choudhary, A., Nizamuddin, M., Zadoo, M., & Sachan, V. K. (2020). Multi-objective optimization framework complying IEEE 802.15.6 communication standards for wireless body area networks. Wireless Networks, 26, 4339-4362. https://doi.org/10.1007/s11276-020-02342-y DOI: https://doi.org/10.1007/s11276-020-02342-y
Çınar, A., & Tuncer, S. A. (2021). Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks. Computer methods in biomechanics and biomedical engineering, 24(2), 203-214. https://doi.org/10.1080/10255842.2020.1821192 DOI: https://doi.org/10.1080/10255842.2020.1821192
Damaševičius, R., Bacanin, N., & Misra, S. (2023). From sensors to safety: Internet of Emergency Services (IoES) for emergency response and disaster management. Journal of Sensor and Actuator Networks, 12(3), 41. https://doi.org/10.3390/jsan12030041 DOI: https://doi.org/10.3390/jsan12030041
Das, K., & Moulik, S. (2025). Wireless body area network for e-health application. Sensor Networks for Smart Hospitals, 263-292. https://doi.org/10.1016/B978-0-443-36370-2.00012-8 DOI: https://doi.org/10.1016/B978-0-443-36370-2.00012-8
Dayoub, M., Shnaigat, S., Tarawneh, R. A., Al-Yacoub, A. N., Al-Barakeh, F., & Al-Najjar, K. (2024). Enhancing animal production through smart agriculture: Possibilities, hurdles, resolutions, and advantages. Ruminants, 4(1), 22-46. https://doi.org/10.3390/ruminants4010003 DOI: https://doi.org/10.3390/ruminants4010003
Devi, A. V., & Kalaivani, V. (2021). Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications. Personal and ubiquitous computing, 27(3), 875-885. https://doi.org/10.1007/s00779-021-01546-z DOI: https://doi.org/10.1007/s00779-021-01546-z
Dhanvijay, M. M., & Patil, S. C. (2021). Optimized mobility management protocol for the IoT based WBAN with an enhanced security. Wireless Networks, 27, 537-555. https://doi.org/10.1007/s11276-020-02470-5 DOI: https://doi.org/10.1007/s11276-020-02470-5
Diane, A., Diallo, O., & Ndoye, E. H. M. (2025). A systematic and comprehensive review on low power wide area network: characteristics, architecture, applications and research challenges. Discover Internet of Things, 5, 7. https://doi.org/10.1007/s43926-025-00097-6 DOI: https://doi.org/10.1007/s43926-025-00097-6
Fan, L., Liu, X., Zhou, H., Leung, V. C., Su, J., & Liu, A. X. (2021). Efficient resource scheduling for interference alleviation in dynamic coexisting WBANs. IEEE Transactions on Mobile Computing, 22(3), 1479-1490. https://doi.org/10.1109/TMC.2021.3110235 DOI: https://doi.org/10.1109/TMC.2021.3110235
Faust, O., Salvi, M., Barua, P. D., Chakraborty, S., Molinari, F., & Acharya, U. R. (2025). Issues and limitations on the road to fair and inclusive AI solutions for biomedical challenges. Sensors, 25(1), 205. https://doi.org/10.3390/s25010205 DOI: https://doi.org/10.3390/s25010205
Garcia, M. H. C., Molina-Galan, A., Boban, M., Gozalvez, J., Coll-Perales, B., Şahin, T., & Kousaridas, A. (2021). A tutorial on 5G NR V2X communications. IEEE Communications Surveys & Tutorials, 23(3), 1972-2026. https://doi.org/10.1109/COMST.2021.3057017 DOI: https://doi.org/10.1109/COMST.2021.3057017
Gavra, V., Pop, O. A., & Dobra, I. (2023). A comprehensive analysis: Evaluating security characteristics of xbee devices against Zigbee protocol. Sensors, 23(21), 8736. https://doi.org/10.3390/s23218736 DOI: https://doi.org/10.3390/s23218736
Ghanem, M., Ghaith, A. K., & Bydon, M. (2024). Artificial intelligence and personalized medicine: Transforming patient care. The New Era of Precision Medicine, 131-142. https://doi.org/10.1016/B978-0-443-13963-5.00012-1 DOI: https://doi.org/10.1016/B978-0-443-13963-5.00012-1
Gudnavar, A., Naregal, K., & Patil, B. (2022). Wireless body area network: Communication standards and radio technologies employed. 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon) (pp. 1-5). IEEE. https://doi.org/10.1109/ACCESS.2022.3163314 DOI: https://doi.org/10.1109/NKCon56289.2022.10126756
Haechan, N., & Kim, Y. S. (2024). Study on deep learning models for the classification of VR sickness levels. Applied Computer Science, 20(4), 1-13. https://doi.org/10.35784/acs-2024-37 DOI: https://doi.org/10.35784/acs-2024-37
Hajar, M. S., Al-Kadri, M. O., & Kalutarage, H. K. (2021). A survey on wireless body area networks: Architecture, security challenges and research opportunities. Computers & Security, 104, 102211. https://doi.org/10.1016/j.cose.2021.102211 DOI: https://doi.org/10.1016/j.cose.2021.102211
Hasan, K., Biswas, K., Ahmed, K., Nafi, N. S., & Islam, M. S. (2019). A comprehensive review of wireless body area network. Journal of Network and Computer Applications, 143, 178-198. https://doi.org/10.1016/j.jnca.2019.06.016 DOI: https://doi.org/10.1016/j.jnca.2019.06.016
Hassan, W. H. W., Sarang, S., Ali, D. M., Stojanovic, G. M., Muhammad, W. N. S. W., & Ya’acob, N. (2024). Adaptive medium access control protocol for dynamic medical traffic with quality of service provisioning in wireless body area network. IEEE Access, 10, 35784-35794. https://doi.org/10.1109/ACCESS.2022.3163314 DOI: https://doi.org/10.1109/ACCESS.2024.3515197
He, P., Liu, M., Lan, C., Su, M., Wang, L., Li, Z., & Tang, T. (2021). Distributed power controller of massive wireless body area networks based on deep reinforcement learning. Mobile Networks and Applications, 26, 1347-1358. https://doi.org/10.1007/s11036-021-01751-3 DOI: https://doi.org/10.1007/s11036-021-01751-3
Henna, S., Meehan, K., & Sakhamuri, M. R. (2023). Multi-armed bandit-based channel bonding for off-body communication in IEEE 802.15.6 cognitive radio wireless body area networks. 2023 34th Irish Signals and Systems Conference (ISSC) (pp. 1-6). IEEE. https://doi.org/10.1109/ISSC59246.2023.10162083 DOI: https://doi.org/10.1109/ISSC59246.2023.10162083
Herculano, J., Pereira, W., Guimarães, M., Cotrim, R., de Sá, A., Assis, F., Macêdo, R., & Gorender, S. (2024). MAC approaches to communication efficiency and reliability under dynamic network traffic in wireless body area networks: a review. Computing, 106, 2785-2809. https://doi.org/10.1007/s00607-024-01307-9 DOI: https://doi.org/10.1007/s00607-024-01307-9
Hong, F., Wang, L., & Li, C. Z. (2024). Adaptive mobile cloud computing on college physical training education based on virtual reality. Wireless Networks, 30, 6427-6450. https://doi.org/10.1007/s11276-023-03450-1 DOI: https://doi.org/10.1007/s11276-023-03450-1
Ibrahim, A. A., & Bayat, O. (2020). Medium access control protocol-based energy and quality of service routing scheme for WBAN. 2020 international congress on human-computer interaction, optimization and robotic applications (HORA) (pp. 1-6). IEEE. https://doi.org/10.1109/HORA49412.2020.9152849 DOI: https://doi.org/10.1109/HORA49412.2020.9152849
Jang, J., Bae, J., & Yoo, H.-J. (2019). Understanding body channel communication: A review: From history to the future applications. 2019 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-8). IEEE. https://doi.org/10.1109/CICC.2019.8780224 DOI: https://doi.org/10.1109/CICC.2019.8780224
Jayasutha, D., Hemamalini, V., Sangeetha, S., & Yeruva, A. R. (2024). DIWGAN‐WBSN: A novel health monitoring approach for wireless body sensor networks. International Journal of Communication Systems, 37(17), e5934. https://doi.org/10.1002/dac.5934 DOI: https://doi.org/10.1002/dac.5934
Jian, W., Tabassum, A., & Li, J. P. (2024). Systematic survey on data security in wireless body area networks in IoT healthcare system. Frontiers in Medicine, 11, 1422911. https://doi.org/10.3389/fmed.2024.1422911 DOI: https://doi.org/10.3389/fmed.2024.1422911
Jiang, D., Njitacke, Z. T., Nkapkop, J. D. D., Tsafack, N., Wang, X., & Awrejcewicz, J. (2022). A new cross ring neural network: Dynamic investigations and application to WBAN. IEEE Internet of Things Journal, 10(8), 7143-7152. https://doi.org/10.1109/JIOT.2022.3228748 DOI: https://doi.org/10.1109/JIOT.2022.3228748
Jiang, D., Zhang, G., Samuel, O. W., Liu, F., & Xiao, H. (2022). Dual-factor wban enhanced authentication system based on iris and ecg descriptors. IEEE Sensors Journal, 22(19), 19000-19009. https://doi.org/10.1002/dac.5934 DOI: https://doi.org/10.1109/JSEN.2022.3198645
Jin, L., & Dong, J. (2018). Normal versus abnormal ECG classification by the aid of deep learning. Artificial Intelligence–Emerging Trends and Applications, 295-315. https://doi.org/ 10.5772/intechopen.75546 DOI: https://doi.org/10.5772/intechopen.75546
Kaleem, M., & Rehman, K. (2024). QoS-aware middleware for WBAN applications. 2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S) (pp. 1-7). IEEE. https://doi.org/10.1109/ICIC3S61846.2024.10603064 DOI: https://doi.org/10.1109/ICIC3S61846.2024.10603064
Kareem, D. A., & Rajesh, D. (2025). Enhancing WBAN Performance with cluster-based routing protocol using black widow optimization for healthcare application. Journal of Intelligent Systems & Internet of Things, 14(1), 45-58. https://doi.org/10.54216/JISIoT.140104 DOI: https://doi.org/10.54216/JISIoT.140104
Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71-85. https://doi.org/10.35784/acs-2022-14 DOI: https://doi.org/10.35784/acs-2022-14
Khater, H. M., Sallabi, F., Serhani, M. A., Barka, E., Shuaib, K., Tariq, A., & Khayat, M. (2024). Empowering healthcare with cyber-physical system - a systematic literature review. IEEE Access, 12, 83952-83993. https://doi.org/10.1109/ACCESS.2024.3407376 DOI: https://doi.org/10.1109/ACCESS.2024.3407376
Khujamatov, K., Akhmedov, N., Reypnazarov, E., Khasanov, D., & Lazarev, A. (2022). Device-to-device and millimeter waves communication for 5G healthcare informatics. Blockchain Applications for Healthcare Informatics, 81-211. https://doi.org/10.1016/B978-0-323-90615-9.00019-0 DOI: https://doi.org/10.1016/B978-0-323-90615-9.00019-0
Kim, B.-S. (2025). Semantic-aware scheduling for minimizing age of informative data in WBAN-based health monitoring systems. IEEE Internet of Things Journal, 12(11), 15970-15986. https://doi.org/10.1016/B978-0-323-90615-9.00019-0 DOI: https://doi.org/10.1109/JIOT.2025.3529952
Krishnamoorthy, S., Dua, A., & Gupta, S. (2023). Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: A survey, current challenges and future directions. Journal of Ambient Intelligence and Humanized Computing, 14, 361-407. https://doi.org/10.1007/s12652-021-03302-w DOI: https://doi.org/10.1007/s12652-021-03302-w
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of EEMD-DFA algorithms and ann classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90-108. https://doi.org/10.35784/acs-2024-18 DOI: https://doi.org/10.35784/acs-2024-18
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., Krakowski, P., & Syta, A. (2025). Multi-scale analysis of knee joint acoustic signals for cartilage degeneration assessment. Sensors, 25(3), 706. https://doi.org/10.3390/s25030706 DOI: https://doi.org/10.3390/s25030706
Matsuda, R., Tanigawa, Y., & Tode, H. (2024). Random-access MAC protocol applying maximum frame aggregation for delay-constrained packet transfer in wireless sensor networks. 2024 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1-4). IEEE. https://doi.org/10.1109/ICCE59016.2024.10444427 DOI: https://doi.org/10.1109/ICCE59016.2024.10444427
Meharouech, A., Elias, J., & Mehaoua, A. (2019). Moving towards body-to-body sensor networks for ubiquitous applications: A survey. Journal of Sensor and Actuator Networks, 8(2), 27. https://doi.org/10.3390/jsan8020027 DOI: https://doi.org/10.3390/jsan8020027
Memon, S., Wang, J., Ahmed, A., Rajab, A., Al Reshan, M. S., Shaikh, A., & Rajput, M. A. (2023). Enhanced probabilistic route stability (EPRS) protocol for healthcare applications of WBAN. IEEE Access, 11, 4466-4477. https://doi.org/10.1109/ACCESS.2023.3235837 DOI: https://doi.org/10.1109/ACCESS.2023.3235837
Mikhaylov, K., & Karvonen, H. (2020). Wake-up radio enabled BLE wearables: Empirical and analytical evaluation of energy efficiency. 2020 14th International Symposium on Medical Information Communication Technology (ISMICT) (pp. 1-5). IEEE. https://doi.org/10.1109/ISMICT48699.2020.9152699 DOI: https://doi.org/10.1109/ISMICT48699.2020.9152699
Mohamed, M., Maiseli, B. J., Ai, Y., Mkocha, K., & Al-Saman, A. (2021). In-body sensor communication: Trends and challenges. IEEE Electromagnetic Compatibility Magazine, 10(2), 47-52. https://doi.org/10.1109/MEMC.2021.9477235 DOI: https://doi.org/10.1109/MEMC.2021.9477235
Mohammad, G. B., Shitharth, S., Syed, S. A., Dugyala, R., Rao, K. S., Alenezi, F., Althubiti, S. A., & Polat, K. (2022). Mechanism of internet of things (IoT) integrated with radio frequency identification (RFID) technology for healthcare system. Mathematical Problems in Engineering, 2022(1), 757256. https://doi.org/10.1155/2022/4167700 DOI: https://doi.org/10.1155/2022/4167700
Mohanty, R. K., Sahoo, S. P., & Kabat, M. R. (2023). Sustainable remote patient monitoring in wireless body area network with Multi-hop routing and scheduling: A four-fold objective based optimization approach. Wireless Networks, 29, 2337-2351. https://doi.org/10.1007/s11276-023-03276 DOI: https://doi.org/10.1007/s11276-023-03276-x
Mousavi, S. M., Khademzadeh, A., & Rahmani, A. M. (2022). The role of low‐power wide‐area network technologies in internet of things: A systematic and comprehensive review. International Journal of Communication Systems, 35(3), e5036. https://doi.org/10.1002/dac.5036 DOI: https://doi.org/10.1002/dac.5036
Suriya, M., Swathi, R., Surya. P., & Veeralakshmi. R. (2020). Enhancing energy in WBAN through cognitive radio networks. International Journal of Advanced Information And Communication Technology, 7(5), 80-84. https://doi.org/10.46532/ijaict-2020019 DOI: https://doi.org/10.46532/ijaict-2020019
Nair, K. K., Abu-Mahfouz, A. M., & Lefophane, S. (2019). Analysis of the narrow band internet of things (NB-IoT) technology. 2019 Conference On Information Communications Technology And Society (ICTAS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICTAS.2019.8703630 DOI: https://doi.org/10.1109/ICTAS.2019.8703630
Nawaz, A., Saidi, S., Osman, N., & Hai, N. (2024). A novel methodology for patient prescreening using wireless body area networks (WBANs). Journal of Medical Artificial Intelligence, 7(15). http://dx.doi.org/10.21037/jmai-24-2 DOI: https://doi.org/10.21037/jmai-24-2
Negra, R. (2022). Leveraging machine learning for WBANs. In I. Jemili & M. Mosbah (Eds.), Distributed Computing for Emerging Smart Networks (Vol. 1564, pp. 38–59). Springer International Publishing. https://doi.org/10.1007/978-3-030-99004-6_3 DOI: https://doi.org/10.1007/978-3-030-99004-6_3
Olatinwo, D. D., Abu-Mahfouz, A. M., & Hancke, G. P. (2021). Towards achieving efficient MAC protocols for WBAN-enabled IoT technology: A review. EURASIP Journal on Wireless Communications and Networking, 2021, 60. https://doi.org/10.1186/s13638-021-01919-1 DOI: https://doi.org/10.1186/s13638-021-01919-1
Olatinwo, D. D., Abu-Mahfouz, A. M., Hancke, G. P., & Myburgh, H. C. (2023). Energy efficient priority-based hybrid MAC protocol for IoT-Enabled WBAN Systems. IEEE Sensors Journal, 23(12), 13524-13538. https://doi.org/10.1109/JSEN.2023.3273427 DOI: https://doi.org/10.1109/JSEN.2023.3273427
Ormanis, J., & Elsts, A. (2020). Towards body coupled communication for ehealth: Experimental study of human body frequency response. 2020 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1-7). IEEE. https://doi.org/10.1109/ICCWorkshops49005.2020.9145205 DOI: https://doi.org/10.1109/ICCWorkshops49005.2020.9145205
Pathak, V., & Singh, K. (2021). Secure and efficient WBANs algorithm with authentication mechanism. Journal of Intelligent & Fuzzy Systems, 41(5), 5525-5534. http://dx.doi.org/10.3233/JIFS-189873 DOI: https://doi.org/10.3233/JIFS-189873
Philip, N. Y., Rodrigues, J. J., Wang, H., Fong, S. J., & Chen, J. (2021). Internet of things for in-home health monitoring systems: Current advances, challenges and future directions. IEEE Journal on Selected Areas in Communications, 39(2), 300-310. https://doi.org/10.1109/JSAC.2020.3042421 DOI: https://doi.org/10.1109/JSAC.2020.3042421
Popov, A., & Ivanko, K. (2024). Introduction to biomedical signals and biomedical imaging. Advances in Artificial Intelligence. 1-57. https://doi.org/10.1016/B978-0-443-19073-5.00013-6 DOI: https://doi.org/10.1016/B978-0-443-19073-5.00013-6
Porumb, M., Stranges, S., Pescapè, A., & Pecchia, L. (2020). Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Scientific reports, 10, 170. https://doi.org/10.1038/s41598-019-56927-5 DOI: https://doi.org/10.1038/s41598-019-56927-5
Postolache, O., Monge, J., Alexandre, R., Geman, O., Jin, Y., & Postolache, G. (2021). Virtual reality and augmented reality technologies for smart physical rehabilitation. In O. Kanoun & N. Derbel (Eds.), Advanced Systems for Biomedical Applications (Vol. 39, pp. 155–180). Springer International Publishing. https://doi.org/10.1007/978-3-030-71221-1_8 DOI: https://doi.org/10.1007/978-3-030-71221-1_8
Prabagar, S., Reddy, C. S., Murthy, C. R., & Kumar, G. H. (2023). Cloud based location tracking and controlling parameters system implementation for armed forces in the war field. 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS) (pp. 471-475). IEEE. https://doi.org/10.1109/ICAIS56108.2023.10073894 DOI: https://doi.org/10.1109/ICAIS56108.2023.10073894
Preethichandra, D., Piyathilaka, L., Izhar, U., Samarasinghe, R., & De Silva, L. C. (2023). Wireless body area networks and their applications - A review. IEEE Access, 11, 9202-9220. https://doi.org/10.1109/ACCESS.2023.3239008 DOI: https://doi.org/10.1109/ACCESS.2023.3239008
Punj, R., & Kumar, R. (2019). Technological aspects of WBANs for health monitoring: A comprehensive review. Wireless Networks, 25, 1125-1157. https://doi.org/10.1109/ACCESS.2023.3239008 DOI: https://doi.org/10.1007/s11276-018-1694-3
Qu, Y., Zheng, G., Ma, H., Wang, X., Ji, B., & Wu, H. (2019). A survey of routing protocols in WBAN for healthcare applications. Sensors, 19(7), 1638. https://doi.org/10.3390/s19071638 DOI: https://doi.org/10.3390/s19071638
Raković, P., & Lutovac, B. (2015). A cloud computing architecture with wireless body area network for professional athletes health monitoring in sports organizations Case study of Montenegro. 2015 4th Mediterranean Conference on Embedded Computing (MECO) (pp. 387-390). IEEE. http://dx.doi.org/10.1109/MECO.2015.7181950 DOI: https://doi.org/10.1109/MECO.2015.7181950
Rameshkumar, C., & Ganeshkumar, T. (2022). A novel of survey: In healthcare system for wireless body-area network. In B. B. V. L. Deepak, D. R. K. Parhi, B. B. Biswal, & P. C. Jena (Eds.), Applications of Computational Methods in Manufacturing and Product Design (pp. 591–609). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0296-3_55 DOI: https://doi.org/10.1007/978-981-19-0296-3_55
Rana, S. U., Hossain, M. M., Kazary, S., & Rahman, M. O. (2024). Multi-class multi-load handling MAC protocol for WBAN based on IEEE 802.15.6 standard using reinforcement learning. 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS) (pp. 1-6). IEEE. https://doi.org/10.1109/COMPAS60761.2024.10796374 DOI: https://doi.org/10.1109/COMPAS60761.2024.10796374
Rangaiah, P. K. B., Engstrand, J., Johansson, T., Perez, M. D., & Augustine, R. (2023). 92 Mb/s fat-intrabody communication (fat-IBC) with low-cost WLAN hardware. IEEE Transactions on Biomedical Engineering, 71(1), 89-96. https://doi.org/10.1109/TBME.2023.3292405 DOI: https://doi.org/10.1109/TBME.2023.3292405
Ranjan, R., Debasis, K., Gupta, R., & Singh, M. (2022). Energy-efficient medium access control in wireless sensor networks. Wireless Personal Communications, 122(1), 409-427. https://doi.org/10.1007/s11277-021-08905-2 DOI: https://doi.org/10.1007/s11277-021-08905-2
Rasool, S. M., & Gafoor, S. A. A. A. (2022). OMAC: Optimal medium access control based energy and QoS compromise techniques for wireless body area networks. Wireless Personal Communications, 123, 3223-3240. https://doi.org/10.1007/s11277-021-09285-3 DOI: https://doi.org/10.1007/s11277-021-09285-3
Raza, S. F., Naveen, C., Satpute, V., & Keskar, A. (2016). A proficient chaos based security algorithm for emergency response in WBAN system. 2016 IEEE Students’ Technology Symposium (TechSym) (pp. 18-23). IEEE. https://doi.org/10.1109/TECHSYM.2016.7872648 DOI: https://doi.org/10.1109/TechSym.2016.7872648
Razdan, S., & Sharma, S. (2022). Internet of Medical Things (IoMT): Overview, emerging technologies, and case studies. IETE technical review, 39(4), 775-788. https://doi.org/10.1080/02564602.2021.1927863 DOI: https://doi.org/10.1080/02564602.2021.1927863
Rhayem, A., Mhiri, M. B. A., Drira, K., Tazi, S., & Gargouri, F. (2021). A semantic‐enabled and context‐aware monitoring system for the internet of medical things. Expert Systems, 38(2), e12629. https://doi.org/10.1111/exsy.12629 DOI: https://doi.org/10.1111/exsy.12629
Riurean, S., Antipova, T., Rocha, Á., Leba, M., & Ionica, A. (2019). VLC, OCC, IR and LiFi reliable optical wireless technologies to be embedded in medical facilities and medical devices. Journal of medical systems, 43(10), 308. https://doi.org/10.1007/s10916-019-1434-y DOI: https://doi.org/10.1007/s10916-019-1434-y
Sagar, A. K., Banda, L., Sahana, S., Singh, K., & Singh, B. K. (2021). Optimizing quality of service for sensor enabled internet of healthcare systems. Neuroscience Informatics, 1(3), 100010. https://doi.org/10.1016/j.neuri.2021.100010 DOI: https://doi.org/10.1016/j.neuri.2021.100010
Sahu, G., & Pawar, S. S. (2022). Smart healthcare in smart city using wireless body area network and 5G. In P. Singh, O. Kaiwartya, N. Sindhwani, V. Jain, & R. Anand, Networking Technologies in Smart Healthcare (1st ed., pp. 1–21). CRC Press. https://doi.org/10.1201/9781003239888-1 DOI: https://doi.org/10.1201/9781003239888-1
Sallabi, F. M., Khater, H. M., Tariq, A., Hayajneh, M., Shuaib, K., & Barka, E. S. (2025). Smart healthcare network management: A comprehensive review. Mathematics, 13(6), 988. https://doi.org/10.3390/math13060988 DOI: https://doi.org/10.3390/math13060988
Selem, E., Fatehy, M., & Abd El-Kader, S. M. (2019). E-Health applications over 5G networks: challenges and state of the art. 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & information Technology (PEIT) (pp. 111-118). IEEE. https://doi.org/10.1109/ACCS-PEIT48329.2019.9062841 DOI: https://doi.org/10.1109/ACCS-PEIT48329.2019.9062841
Selem, E., Fatehy, M., & Abd El-Kader, S. M. (2021). mobTHE (mobile temperature heterogeneity energy) aware routing protocol for WBAN IoT health application. IEEE Access, 9, 18692-18705. https://doi.org/10.1109/ACCESS.2021.3054367 DOI: https://doi.org/10.1109/ACCESS.2021.3054367
Shaik, M. F., Komanapalli, V. L. N., & Subashini, M. M. (2018). A comparative study of interference and mitigation techniques in wireless body area networks. Wireless Personal Communications, 98, 2333-2365. https://doi.org/10.1007/s11277-017-4977-6 DOI: https://doi.org/10.1007/s11277-017-4977-6
Shaikh, T. A., Rasool, T., & Verma, P. (2023). Machine intelligence and medical cyber-physical system architectures for smart healthcare: Taxonomy, challenges, opportunities, and possible solutions. Artificial Intelligence in Medicine, 146, 102692. https://doi.org/10.1016/j.artmed.2023.102692 DOI: https://doi.org/10.1016/j.artmed.2023.102692
Sharmila, A. H., & Jaisankar, N. (2021). Edge intelligent agent assisted hybrid hierarchical blockchain for continuous healthcare monitoring & recommendation system in 5G WBAN-IoT. Computer Networks, 200, 108508. https://doi.org/10.1016/j.comnet.2021.108508 DOI: https://doi.org/10.1016/j.comnet.2021.108508
Shunmugapriya, B., Paramasivan, B., Ananthakumaran, S., & Naskath, J. (2022). Wireless body area networks: survey of recent research trends on energy efficient routing protocols and guidelines. Wireless Personal Communications, 123, 2473-2504. https://doi.org/10.1007/s11277-021-09250-0 DOI: https://doi.org/10.1007/s11277-021-09250-0
Singh, H., Patidar, S., Pratap, A., & Yasumoto, K. (2025). Maximizing utility and quality in smart healthcare with incentive driven hierarchical federated learning. 2025 17th International Conference on COMmunication Systems and NETworks (COMSNETS) (pp. 120-125). IEEE. https://doi.org/10.1109/COMSNETS63942.2025.10885703 DOI: https://doi.org/10.1109/COMSNETS63942.2025.10885703
Singla, R., Kaur, N., Koundal, D., & Bharadwaj, A. (2022). Challenges and developments in secure routing protocols for healthcare in WBAN: A comparative analysis. Wireless Personal Communications, 122, 1767–1806. https://doi.org/10.1007/s11277-021-08969-0 DOI: https://doi.org/10.1007/s11277-021-08969-0
Subha, T., Subash, T., Rani, N. E., & Janani, P. (2020). Li-Fi: a revolution in wireless networking. Materials today: Proceedings, 24, 2403-2413. https://doi.org/10.1016/j.matpr.2020.03.770 DOI: https://doi.org/10.1016/j.matpr.2020.03.770
Sultania, A. K., Blondia, C., & Famaey, J. (2021). Optimizing the energy-latency tradeoff in NB-IoT with PSM and eDRX. IEEE Internet of Things Journal, 8(15), 12436-12454. https://doi.org/10.1109/JIOT.2021.3063435 DOI: https://doi.org/10.1109/JIOT.2021.3063435
Sun, J., & Sun, X. (2024). Design a patient monitoring system in health care using cluster-based hierarchical routing for green communication. Measurement: Sensors, 31, 100990. https://doi.org/10.1016/j.measen.2023.100990 DOI: https://doi.org/10.1016/j.measen.2023.100990
Taleb, H., Nasser, A., Andrieux, G., Charara, N., & Motta Cruz, E. (2021). Wireless technologies, medical applications and future challenges in WBAN: A survey. Wireless Networks, 27, 5271-5295. https://doi.org/10.1007/s11276-021-02780-2 DOI: https://doi.org/10.1007/s11276-021-02780-2
Talpur, M. S. H., Abro, A. A., Ebrahim, M., Kandhro, I. A., Manickam, S., Arfeen, S. U., Dandoush, A., & Uddin, M. (2024). Illuminating healthcare management: A comprehensive review of iot-enabled chronic disease monitoring. IEEE Access¸ 12, 48189-48209. https://doi.org/10.1109/ACCESS.2024.3382011 DOI: https://doi.org/10.1109/ACCESS.2024.3382011
Tusha, A., & Arslan, H. (2024). Interference burden in wireless communications: A comprehensive survey from PHY layer perspective. IEEE Communications Surveys & Tutorials, 1-1. https://doi.org/10.1109/COMST.2024.3487068 DOI: https://doi.org/10.1109/COMST.2024.3487068
Urwan, S., & Cwalina, K. K. (2024). User orientation detection in relation to antenna geometry in ultra-wideband wireless body area networks using deep learning. Sensors, 24(7), 2060. https://doi.org/10.3390/s24072060 DOI: https://doi.org/10.3390/s24072060
Wang, K., Yap, L. W., Gong, S., Wang, R., Wang, S. J., & Cheng, W. (2021). Nanowire‐based soft wearable human–machine interfaces for future virtual and augmented reality applications. Advanced Functional Materials, 31(39), 2008347. https://doi.org/10.1002/adfm.202008347 DOI: https://doi.org/10.1002/adfm.202008347
Wang, L., Xu, B., Cai, H., & Zhang, P. (2022). Context‐aware emergency detection method for edge computing‐based healthcare monitoring system. Transactions on Emerging Telecommunications Technologies, 33(6), e4128. https://doi.org/10.1002/ett.4128 DOI: https://doi.org/10.1002/ett.4128
Yaghoubi, M., Ahmed, K., & Miao, Y. (2022). Wireless body area network (WBAN): A survey on architecture, technologies, energy consumption, and security challenges. Journal of Sensor and Actuator Networks, 11(4), 67. https://doi.org/10.3390/jsan11040067 DOI: https://doi.org/10.3390/jsan11040067
Yang, X., Wang, L., & Zhang, Z. (2018). Wireless body area networks mac protocol for energy efficiency and extending lifetime. IEEE Sensors Letters, 2(1), 7500404. https://doi.org/10.1109/LSENS.2018.2795566 DOI: https://doi.org/10.1109/LSENS.2018.2795566
Yang, X., Yi, X., Khalil, I., Luo, J., Bertino, E., Nepal, S., & Huang, X. (2021). Secure and lightweight authentication for mobile-edge computing-enabled WBANs. IEEE Internet of Things Journal, 9(14), 12563-12572. https://doi.org/10.1109/JIOT.2021.3138989 DOI: https://doi.org/10.1109/JIOT.2021.3138989
Zakariya Saleh, Z. (2023). A review of emerging low power networks in Internet of Medical Things (IoMT). In K. Rabie, R. Kharel, L. Mohjazi, T. Elganimi, & W. U. Khan (Eds.), IoT as a Service (Vol. 506, pp. 23–37). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37139-4_3 DOI: https://doi.org/10.1007/978-3-031-37139-4_3
Zhang, F., Yu, F., Zheng, X., Liu, L., & Ma, H. (2023). DFH: Improving the reliability of LR-FHSS via dynamic frequency hopping. IEEE 31st International Conference on Network Protocols (ICNP) (pp. 1-12). IEEE. https://doi.org/10.1109/ICNP59255.2023.10355600 DOI: https://doi.org/10.1109/ICNP59255.2023.10355600
Zhong, L., He, S., Lin, J., Wu, J., Li, X., Pang, Y., & Li, Z. (2022). Technological requirements and challenges in wireless body area networks for health monitoring: A comprehensive survey. Sensors, 22(9), 3539. https://doi.org/10.3390/s22093539 DOI: https://doi.org/10.3390/s22093539
Zhumayeva, M., Dautov, K., Hashmi, M., & Nauryzbayev, G. (2023). Wireless energy and information transfer in WBAN: A comprehensive state-of-the-art review. Alexandria Engineering Journal, 85, 261-285. https://doi.org/10.1016/j.aej.2023.11.030 DOI: https://doi.org/10.1016/j.aej.2023.11.030
Article Details
Abstract views: 241
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
