A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The failure of solder joints of Ball Grid Array (BGA)Package under drop impact is influenced by multiple parameters, highlighting the need for optimization during the early design stages of electronic systems. In this paper, ensemble methods were developed to predict failure in solder joints by estimating the dynamic responses of printed circuit board assembly (PCBA) during drop impact conditions. Finite element (FE) simulations were carried out by varying PCB thickness, PCB modulus, solder ball diameter, and solder ball material to obtain the dynamic responses of the PCBA during impact loading, which served as the dataset for the predictive model. Also drop test experiments were conducted according to the JESD22-B111A standard to validate the FEM results. XGBoost regression achieved the best performance with an R² of 0.96 and the lowest error, with feature importance analysis identifying solder ball material (score: 0.447) as the most influential factor and PCB modulus (score: 0.065) as the least.The predictive model developed in this work offers a robust tool for evaluating mechanical performance and optimizing design parameters in PCBA structures under dynamic mechanical stresses.
Keywords:
References
Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 203, 810-821. https://doi.org/10.1016/j.jclepro.2018.08.207 DOI: https://doi.org/10.1016/j.jclepro.2018.08.207
Apalowo, R. K., Abas, M. A., Che Ani, F., Muhamed Mukhtar, M. A. F., & Ramli, M. R. (2024). Thermal fatigue life prediction and intermetallic compound behaviour of SAC305 BGA solder joints subject to accelerated thermal cycling test. Soldering & Surface Mount Technology, 36(3), 154-164. https://doi.org/10.1108/SSMT-12-2023-0075 DOI: https://doi.org/10.1108/SSMT-12-2023-0075
Arriola, E. R., Ubando, A. T., Gonzaga, J. A., & Lee, C. C. (2023). Wafer-level chip-scale package lead-free solder fatigue: A critical review. Engineering Failure Analysis, 144, 106986. https://doi.org/10.1016/j.engfailanal.2022.106986 DOI: https://doi.org/10.1016/j.engfailanal.2022.106986
Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967. ttps://doi.org/10.1007/s10462-020-09896-5 DOI: https://doi.org/10.1007/s10462-020-09896-5
Chakraborty, P., Rafiammal, S. S., Tharini, C., & Jamal, D. N. (2022). Influence of bias and variance in selection of machine learning classifiers for biomedical applications. Smart Data Intelligence (ICSMDI) (pp. 459-472). Springer Nature. https://doi.org/10.1007/978-981-19-3311-0_39 DOI: https://doi.org/10.1007/978-981-19-3311-0_39
Chen, T., & Guestrin, C. (2016). Boost: A scalable tree boosting system. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785 DOI: https://doi.org/10.1145/2939672.2939785
Chen, Y., Jing, B., Li, J., Jiao, X., Hu, J., & Wang, Y. (2020). Failure analysis and modeling of solder joints in BGA packaged electronic chips. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(1), 43-50. https://doi.org/10.1109/TCPMT.2020.3040757 DOI: https://doi.org/10.1109/TCPMT.2020.3040757
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623 DOI: https://doi.org/10.7717/peerj-cs.623
Gu, J., Lei, Y., Lin, J., Fu, H., & Wu, Z. (2017). The failure models of lead-free Sn-3.0 Ag-0.5 Cu solder joint reliability under low-G and high-G drop impact. Journal of Electronic Materials, 46, 1396-1404. https://doi.org/10.1007/s11664-016-5027-y DOI: https://doi.org/10.1007/s11664-016-5027-y
Gu, J., Lin, J., Lei, Y., & Fu, H. (2018). Experimental analysis of Sn-3.0 Ag-0.5 Cu solder joint board-level drop/vibration impact failure models after thermal/isothermal cycling. Microelectronics Reliability, 80, 29-36. https://doi.org/10.1016/j.microrel.2017.10.014 DOI: https://doi.org/10.1016/j.microrel.2017.10.014
Huang, J. S., Liew, J. X., Ademiloye, A. S., & Liew, K. M. (2021). Artificial intelligence in materials modeling and design. Archives of Computational Methods in Engineering, 28, 3399-3413. https://doi.org/10.1007/s11831-020-09506-1 DOI: https://doi.org/10.1007/s11831-020-09506-1
JEDEC. (2024, June). Board level drop test method of components for handheld electronic products. JESD22-B111A. https://www.jedec.org/standards-documents/docs/jesd-22-b111
Ling, C., Azahari, T., Abas, M. A., & Ng, F. C. (2025). Correlation study on voiding in underfill of large quantity ball grid array chip using machine learning. Journal of Electronic Packaging, 147(1), 011001. https://doi.org/10.1115/1.4065077 DOI: https://doi.org/10.1115/1.4065077
Luan, J. E., Tee, T. Y., Pek, E., Lim, C. T., Zhong, Z., & Zhou, J. (2006). Advanced numerical and experimental techniques for analysis of dynamic responses and solder joint reliability during drop impact. IEEE Transactions on Components and Packaging technologies, 29(3), 449-456. https://doi.org/10.1109/TCAPT.2006.880455 DOI: https://doi.org/10.1109/TCAPT.2006.880455
Mao, M., Wang, W., Lu, C., Jia, F., & Long, X. (2022). Machine learning for board-level drop response of BGA packaging structure. Microelectronics Reliability, 134, 114553. https://doi.org/10.1016/j.microrel.2022.114553 DOI: https://doi.org/10.1016/j.microrel.2022.114553
Muthuram, N., & Saravanan, S. (2022). Free fall drop impact analysis of board level electronic packages. Microelectronics Journal, 129, 105601. https://doi.org/10.1016/j.mejo.2022.105601 DOI: https://doi.org/10.1016/j.mejo.2022.105601
Muench, S., Bhat, D., Heindel, L., Hantschke, P., Roellig, M., & Kaestner, M. (2022). Performance assessment of different machine learning algorithm for life-time prediction of solder joints based on synthetic data. 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) (pp. 1-10). IEEE. https://doi.org/10.1109/EuroSimE54907.2022.9758919 DOI: https://doi.org/10.1109/EuroSimE54907.2022.9758919
Niu, X. Y., Li, W., Wang, G. X., & Shu, X. F. (2015). Effects of temperature and strain rate on mechanical behavior of low-silver lead-free solder under drop impact. Journal of Materials Science: Materials in Electronics, 26, 601-607. https://doi.org/10.1007/s10854-014-2441-x DOI: https://doi.org/10.1007/s10854-014-2441-x
Nashrudin, M. N., Ng, F. C., Abas, A., Abdullah, M. Z., Ali, M. Y. T., & Samsudin, Z. (2022). Prediction of the void formation in no-flow underfill process using machine learning-based algorithm. Microelectronics Reliability, 135, 114586. https://doi.org/10.1016/j.microrel.2022.114586 DOI: https://doi.org/10.1016/j.microrel.2022.114586
Porathur, F. J., Kamble, V. G., Stadler, E., Huber, F., Gruber, D. P., & Fuchs, P. F. (2024). Warpage optimization of package substrates using metamodels: A review. 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) (pp. 1-9). IEEE. https://doi.org/10.1109/EuroSimE60745.2024.10491528 DOI: https://doi.org/10.1109/EuroSimE60745.2024.10491528
Reihanisaransari, R., Samadifam, F., Salameh, A. A., Mohammadiazar, F., Amiri, N., & Channumsin, S. (2022). Reliability characterization of solder joints in electronic systems through a neural network aided approach. IEEE Access, 10, 123757-123768. https://doi.org/10.1109/ACCESS.2022.3224008 DOI: https://doi.org/10.1109/ACCESS.2022.3224008
Ross, J. S. (2023). Comparing the performance of different machine learning models in the evaluation of solder joint fatigue life under thermal cycling. Portland State University. https://doi.org/10.15760/etd.3425 DOI: https://doi.org/10.15760/etd.3425
Rengasamy, D., Mase, J. M., Kumar, A., Rothwell, B., Torres, M. T., Alexander, M. R., Winkler, D. A., & Figueredo, G. P. (2022). Feature importance in machine learning models: A fuzzy information fusion approach. Neurocomputing, 511, 163-174. https://doi.org/10.1016/j.neucom.2022.09.053 DOI: https://doi.org/10.1016/j.neucom.2022.09.053
Sha, Y., He, Z., Du, J., Zhu, Z., & Lu, X. (2022). Intelligent detection technology of flip chip based on H-SVM algorithm. Engineering Failure Analysis, 134, 106032. https://doi.org/10.1016/j.engfailanal.2022.106032 DOI: https://doi.org/10.1016/j.engfailanal.2022.106032
Shehadeh, A., Alshboul, O., Al Mamlook, R. E., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827. https://doi.org/10.1016/j.autcon.2021.103827 DOI: https://doi.org/10.1016/j.autcon.2021.103827
Tee, T. Y., Ng, H. S., Lim, C. T., Pek, E., & Zhong, Z. (2004). Impact life prediction modeling of TFBGA packages under board level drop test. Microelectronics Reliability, 44(7), 1131-1142. https://doi.org/10.1016/j.microrel.2004.03.005 DOI: https://doi.org/10.1016/j.microrel.2004.03.005
Tauscher, M., Lämmle, S., Roos, D., & Wilde, J. (2024). Bayesian calibration of ball grid array lifetime models for solder fatigue. Microelectronics Reliability, 155, 115366. https://doi.org/10.1016/j.microrel.2024.115366 DOI: https://doi.org/10.1016/j.microrel.2024.115366
Wang, P. H., Lee, Y. C., Lee, C. K., Chang, H. H., & Chiang, K. N. (2021). Solder joint reliability assessment and pad size studies of FO-WLP with glass substrate. IEEE Transactions on Device and Materials Reliability, 21(1), 96-101. https://doi.org/10.1109/TDMR.2021.3056054 DOI: https://doi.org/10.1109/TDMR.2021.3056054
Wang, S., & Wang, Y. (2020). Improving random forest algorithm by Lasso method. Journal of Statistical Computation and Simulation, 91(2), 353-367. https://doi.org/10.1080/00949655.2020.1814776 DOI: https://doi.org/10.1080/00949655.2020.1814776
Wang, Z., Liu, X., He, Z., Su, L., & Lu, X. (2019). Intelligent detection of flip chip with the scanning acoustic microscopy and the general regression neural network. Microelectronic Engineering, 217, 111127. https://doi.org/10.1016/j.mee.2019.111127 DOI: https://doi.org/10.1016/j.mee.2019.111127
Wu, M. L., & Lan, J. S. (2018). Reliability and failure analysis of SAC 105 and SAC 1205N lead-free solder alloys during drop test events. Microelectronics Reliability, 80, 213-222. https://doi.org/10.1016/j.microrel.2017.12.013 DOI: https://doi.org/10.1016/j.microrel.2017.12.013
Xia, J., Li, G., Li, B., Cheng, L., & Zhou, B. (2017). Fatigue life prediction of package-on-package stacking assembly under random vibration loading. Microelectronics Reliability, 71, 111-118. https://doi.org/10.1016/j.microrel.2017.03.005 DOI: https://doi.org/10.1016/j.microrel.2017.03.005
Yagnamurthy, V. N. C., & Nathi, V. K. (2025). Board level solder joint analysis of ball grid array package under drop test using finite element methods. Matéria (Rio de Janeiro), 30, e20240798. https://doi.org/10.1590/1517-7076-RMAT-2024-0798 DOI: https://doi.org/10.1590/1517-7076-rmat-2024-0798
Yuan, C., Fan, X., & Zhang, G. (2021). Solder joint reliability risk estimation by AI-assisted simulation framework with genetic algorithm to optimize the initial parameters for AI models. Materials, 14(17), 4835. https://doi.org/10.3390/ma14174835 DOI: https://doi.org/10.3390/ma14174835
Yuan, C., de Jong, S. M., & van Driel, W. D. (2024). AI-assisted design for reliability: Review and perspectives. 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) (pp. 1-12). IEEE. https://doi.org/10.1109/EuroSimE60745.2024.10491447 DOI: https://doi.org/10.1109/EuroSimE60745.2024.10491447
Yuan, C. C., & Lee, C. C. (2020). Solder joint reliability modeling by sequential artificial neural network for glass wafer level chip scale package. IEEE Access, 8, 143494-143501. https://doi.org/10.1109/ACCESS.2020.3014156 DOI: https://doi.org/10.1109/ACCESS.2020.3014156
Article Details
Abstract views: 113
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
