Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Article Sidebar
Open full text
Issue Vol. 21 No. 3 (2025)
-
Taming complexity: Generative doppelgangers for stochastic data trends in complex industrial manufacturing systems
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Boniface ONDO, Timothée KOMBE1-22
-
Kidney disease diagnosis based on artificial intelligence/deep learning techniques
Abeer ALSHIHA, Abdalrahman QUBAA23-37
-
Pulmonary diseases identification: Deep learning models and ensemble learning
Patrycja KWAŚNIEWSKA, Grzegorz ZIELIŃSKI, Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA38-58
-
A machine learning approach for evaluating drop impact reliability of solder joints in BGA packaging
Venkata Naga Chandana YANAMURTHY, Venu Kumar NATHI59-71
-
Prediction of remaining useful life and downtime of induction motors with supervised machine learning
Muhammad Dzulfiqar ANINDHITO, SUHARJITO72-86
-
An ensemble model for maternal health risk classification in Delta State, Nigeria
Oghenevabaire EFEVBERHA-OGODO, Francisca A. EGBOKHARE, Fidelis O. CHETE87-98
-
Transforming ERP interfaces in production environments: An empirical evaluation using the User Experience Questionnaire
Anna HAMERA99-116
-
Systematic drift characterization in differential wheeled robot using external VR tracking: Effects of route complexity and motion dynamics
Stanisław Piotr SKULIMOWSKI, Szymon RYBKA, Bartosz TATARA, Michał Dawid WELMAN117-136
-
Wireless body area networks: A review of challenges, architecture, applications, technologies and interference mitigation for next-generation healthcare
Akeel Abdulraheem THULNOON, Ahmed Mahdi JUBAIR, Foad Salem MUBAREK, Senan Ali ABD137-161
-
Fuzzy logic in arrhythmia detection: A systematic review of techniques, applications, and clinical interpretability
Nadjem Eddine MENACEUR, Sofia KOUAH, Derdour MEKHLOUF, Khaled OUANES, Meryam AMMI162-181
-
Enhancing interpretability in brain tumor detection: Leveraging Grad-CAM and SHAP for explainable AI in MRI-based cancer diagnosis
Nasr GHARAIBEH182-197
-
Noise source analysis of the nitrogen generation system
Grzegorz BARAŃSKI198-209
Archives
-
Vol. 21 No. 4
2025-12-31 12
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2026-01-08 8
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
muhammad.anindhito002@binus.ac.id
Abstract
This research aims to use a vibration monitoring system along with machine learning techniques to predict the downtime and Remaining Useful Life (RUL) of three-phase induction motors in the manufacturing sector. The study obtains measurement data from accelerometer sensors that collect various parameters related to motor performance. The research includes a data preprocessing stage to handle missing data, select predictor attributes, and remove duplicates. Supervised learning algorithms are applied, including Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), and Artificial Neural Network (ANN). The results show that DT and NB models have the best performance in downtime classification, achieving 100% accuracy, recall, precision and F1 values. In terms of predicting Remaining Useful Life (RUL), the RF model outperforms the base model and ANN, showing better results in Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and correlation coefficient.
Keywords:
References
Antgren, A., & Lindberg Brännström, A. (2022). Classifying downtime events for connected factories using machine learning. Master’s Thesis Department of Computer Science, Lund University.
Bezerra, F. E., Oliveira Neto, G. C. de, Cervi, G. M., Francesconi Mazetto, R., Faria, A. M. de, Vido, M., Lima, G. A., Araújo, S. A. de, Sampaio, M., & Amorim, M. (2024). Impacts of feature selection on predicting machine failures by machine learning algorithms. Applied Sciences, 14(8), 3337. https://doi.org/10.3390/app14083337 DOI: https://doi.org/10.3390/app14083337
Bienefeld, C., Kirchner, E., Vogt, A., & Kacmar, M. (2022). On the importance of temporal information for remaining useful life prediction of rolling bearings using a random forest regressor. Lubricants, 10(4), 67. https://doi.org/10.3390/lubricants10040067 DOI: https://doi.org/10.3390/lubricants10040067
Fadilah, W. R. U., Agfiannisa, D., & Azhar, Y. (2020). Analisis prediksi harga Saham PT. telekomunikasi indonesia menggunakan metode support vector machine. Fountain of Informatics Journal, 5(2), 45. https://doi.org/10.21111/fij.v5i2.4449 DOI: https://doi.org/10.21111/fij.v5i2.4449
Geetha, A., & Nasira, G. M. (2014). Artificial neural networks’ application in weather forecasting-using RapidMiner. International Journal of Computational Intelligence and Informatics, 4(3), 177-182.
Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classification: An overview. ArXiv, abs/2008.05756, https://doi.org/10.48550/arXiv.2008.05756
He, W., Yin, D., Zhang, K., Zhang, X., & Zheng, J. (2021). Fault detection and diagnosis method of distributed photovoltaic array based on fine-tuning naive bayesian model. Energies, 14(14), 4140. https://doi.org/10.3390/en14144140 DOI: https://doi.org/10.3390/en14144140
Kadyan, S., Sharma, Y., Agnihotri, A. K., Singh, V. B., Kothari, R., & Kunwar, F. B. (2024). Human-Centric AI Applications for Remote Patient Monitoring. In K. Saini & J. Singh (Eds.), Blockchain and IoT Approaches for Secure Electronic Health Records (EHR) (pp. 117-137). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-1662-7.ch006 DOI: https://doi.org/10.4018/979-8-3693-1662-7.ch006
Li, X., Elasha, F., Shanbr, S., & Mba, D. (2019). Remaining useful life prediction of rolling element bearings using supervised machine learning. Energies, 12(14), 2705. https://doi.org/10.3390/en12142705 DOI: https://doi.org/10.3390/en12142705
Malta, J., Wahyudi, B. I., & Bur, M. (2014). Analisis getaran bantalan rotor skala laboratorium untuk kondisi lingkungan normal dan berdebu. TeknikA, 21(3), 36-49.
Manakova, O. S., Mayorov, M. A., & Sidorov, A. V. (2019). Vibrations in engineering systems. IOP Conference Series: Materials Science and Engineering, 666, 012044. https://doi.org/10.1088/1757-899X/666/1/012044 DOI: https://doi.org/10.1088/1757-899X/666/1/012044
Okoh, C., Roy, R., Mehnen, J., & Redding, L. (2014). Overview of remaining useful life prediction techniques in through-life engineering services. ProcediaCIRP, 16, 158–163. https://doi.org/https://doi.org/10.1016/j.procir.2014.02.006 DOI: https://doi.org/10.1016/j.procir.2014.02.006
Rzayeva, L., Myrzatay, A., Abitova, G., Sarinova, A., Kulniyazova, K., Saoud, B., & Shayea, I. (2023). Enhancing LAN failure predictions with decision trees and SVMs: Methodology and implementation. Electronics, 12(18) 3950. https://doi.org/10.3390/electronics12183950 DOI: https://doi.org/10.3390/electronics12183950
Sekhar, J. N. C., Domathoti, B., & Santibanez Gonzalez, E. D. R. (2023). Prediction of battery remaining useful life using machine learning algorithms. Sustainability, 15(21), 15283. https://doi.org/10.3390/su152115283 DOI: https://doi.org/10.3390/su152115283
Sengamalai, U., Anbazhagan, G., Thamizh Thentral, T. M., Vishnuram, P., Khurshaid, T., & Kamel, S. (2022). Three phase induction motor drive: A systematic review on dynamic modeling, parameter estimation, and control schemes. Energies, 15(21), 8260. https://doi.org/10.3390/en15218260 DOI: https://doi.org/10.3390/en15218260
Shanmugavalli, M., & Ignatia K. M. (2023). Comparative study among MAPE, RMSE and R Square over the treatment techniques undergone for PCOS influenced women. Recent Patents on Engineering, 19(1), e041223224190. https://doi.org/10.2174/0118722121269786231120122435 DOI: https://doi.org/10.2174/0118722121269786231120122435
Tiboni, M., Remino, C., Bussola, R., & Amici, C. (2022). A review on vibration-based condition monitoring of rotating machinery. Applied Sciences, 12(3), 972. https://doi.org/10.3390/app12030972 DOI: https://doi.org/10.3390/app12030972
Toma, R. N., Prosvirin, A. E., & Kim, J. M. (2020). Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers. Sensors, 20(7), 1884. https://doi.org/10.3390/s20071884 DOI: https://doi.org/10.3390/s20071884
Tun, W., Wong, J. K.-W., & Ling, S.-H. (2021). Hybrid random forest and support vector machine modeling for hvac fault detection and diagnosis. Sensors, 21(24), 8163. https://doi.org/10.3390/s21248163 DOI: https://doi.org/10.3390/s21248163
Vieira, J. L. de M., Farias, F. C., Ochoa, A. A. V., de Menezes, F. D., Costa, A. C. A. da, da Costa, J. Â. P., de Novaes Pires Leite, G., Vilela, O. de C., de Souza, M. G. G., & Michima, P. S. A. (2024). Remaining useful life estimation framework for the main bearing of wind turbines operating in real time. Energies, 17(6), 1430. https://doi.org/10.3390/en17061430 DOI: https://doi.org/10.3390/en17061430
Wang, Y., Zhao, Y., & Addepalli, S. (2020). Remaining useful life prediction using deep learning approaches: A review. Procedia Manufacturing, 49, 81–88. https://doi.org/https://doi.org/10.1016/j.promfg.2020.06.015 DOI: https://doi.org/10.1016/j.promfg.2020.06.015
Wu, J., Cheng, X., Huang, H., Fang, C., Zhang, L., Zhao, X., Zhang, L., & Xing, J. (2023). Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.937035 DOI: https://doi.org/10.3389/fenrg.2022.937035
Hartanta, R. Y., Riyadi, S., Jeckson. (2023). Analysis and visualization of high school student achievement data using decision tree and cross-validation in rapidminer. Emerging Information Science and Technology, 4(2). https://doi.org/10.18196/eist.v4i2.20731 DOI: https://doi.org/10.18196/eist.v4i2.20731
Article Details
Abstract views: 178
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
