MODELING THE OPTIMAL MEASUREMENT TIME WITH A PROBE ON THE MACHINE TOOL USING MACHINE LEARNING METHODS
Jerzy JÓZWIK
(Poland)
Magdalena ZAWADA-MICHAŁOWSKA
(Poland)
Monika KULISZ
(Poland)
Paweł TOMIŁO
(Poland)
Marcin BARSZCZ
(Poland)
Paweł PIEŚKO
p.piesko@pollub.pla:1:{s:5:"en_US";s:21:"Politechnika Lubelska";} (Poland)
Michał LELEŃ
(Poland)
Kamil CYBUL
(Poland)
Abstract
This paper explores the application of various machine learning techniques to model the optimal measurement time required after machining with a probe on CNC machine tools. Specifically, the research employs four different machine learning models: Elastic Net, Neural Networks, Decision Trees, and Support Vector Machines, each chosen for their unique strengths in addressing different aspects of predictive modeling in an industrial context. The study examines as input parameters such as material type, post-processing wall thickness, cutting depth, and rotational speed over measurement time. This approach ensures that the models account for the variables that significantly affect CNC machine operations. Regression value, mean square error, root mean square error, mean absolute percentage error, and mean absolute error were used to evaluate the quality of the obtained models. As a result of the analyses, the best modeling results were obtained using neural networks. Their ability to accurately predict measurement times can significantly increase operational efficiency by optimizing schedules and reducing downtime in machining processes.
Keywords:
optimal measurement time, CNC machine tool, machine learning methodsReferences
Arachchige, A., Sugathadasa, R., Herath, O. & Thibbotuwawa, A. (2021). Artificial neural network based demand forecasting integrated with federal funds rate. Applied Computer Science, 17(4), 34–44. https://doi.org/10.23743/ACS-2021-27
DOI: https://doi.org/10.35784/acs-2021-27
Google Scholar
Biruk-Urban, K., Zagórski, I., Kulisz, M. & Leleń, M. (2023). Analysis of vibration, deflection angle and surface roughness in water-jet cutting of AZ91D magnesium alloy and simulation of selected surface roughness parameters using ANN. Materials, 16(9), 3384. https://doi.org/10.3390/MA16093384
DOI: https://doi.org/10.3390/ma16093384
Google Scholar
Blecha, P., Holub, M., Marek, T., Jankovych, R., Misun, F., Smolik, J. & Machalka, M. (2022). Capability of measurement with a touch probe on CNC machine tools. Measurement, 195, 111153. https://doi.org/10.1016/J.MEASUREMENT.2022.111153
DOI: https://doi.org/10.1016/j.measurement.2022.111153
Google Scholar
Bobrov, V. F. (1975). Basics of metal cutting theory. Mechanical engineering.
Google Scholar
Fleischer, J., Pabst, R. & Kelemen, S. (2007). Heat flow simulation for dry machining of power train castings. CIRP Annals, 56(1), 117–122. https://doi.org/10.1016/J.CIRP.2007.05.030
DOI: https://doi.org/10.1016/j.cirp.2007.05.030
Google Scholar
Guiassa, R. & Mayer, J. R. R. (2011). Predictive compliance based model for compensation in multi-pass milling by on-machine probing. CIRP Annals, 60(1), 391–394. https://doi.org/10.1016/J.CIRP.2011.03.123
DOI: https://doi.org/10.1016/j.cirp.2011.03.123
Google Scholar
Jacniacka, E. & Semotiuk, L. (2011). Odkształcenia cieplne a niedokładność pomiaru sondą przedmiotową. Pomiary Automatyka Kontrola, 57(9), 985–988.
Google Scholar
Jacniacka, E., Semotiuk, L. & Pieśko, P. (2010). Niepewność pomiaru wewnątrzobrabiarkowego systemu pomiarowego z zastosowaniem sondy OMP 60. Przegląd Mechaniczny, 6, 36–42.
Google Scholar
Kamieńska-Krzowska, B., Semotiuk, L. & Czerw, M. (2007). Analiza możliwości zastosowania sondy przedmiotowej do kontroli czynnej na pionowym centrum obróbkowym FV 580A. Acta Mechanica et Automatica, 1(2), 19–24.
Google Scholar
Kizaki, T., Tsujimura, S., Marukawa, Y., Morimoto, S. & Kobayashi, H. (2021). Robust and accurate prediction of thermal error of machining centers under operations with cutting fluid supply. CIRP Annals, 70(1), 325–328. https://doi.org/10.1016/J.CIRP.2021.04.074
DOI: https://doi.org/10.1016/j.cirp.2021.04.074
Google Scholar
Kulisz, M., Zagórski, I., Józwik, J. & Korpysa, J. (2022a). Research, modelling and prediction of the influence of technological parameters on the selected 3D roughness parameters, as well as temperature, shape and geometry of chips in milling AZ91D Alloy. Materials, 15(12), 4277. https://doi.org/10.3390/ma15124277
DOI: https://doi.org/10.3390/ma15124277
Google Scholar
Kulisz, M., Zagórski, I., Weremczuk, A., Rusinek, R. & Korpysa, J. (2022b). Analysis and prediction of the impact of technological parameters on cutting force components in rough milling of AZ31 magnesium alloy. Archives of Civil and Mechanical Engineering, 22, 1. https://doi.org/10.1007/s43452-021-00319-y
DOI: https://doi.org/10.1007/s43452-021-00319-y
Google Scholar
Kulisz, M., Józwik, J., Barszcz, M., Pieśko, P., Zawada- Michałowska, M. & Leleń, M. (n.d.). Process analysis, optimization and modeling of time measuring of the workpiece using an inspection probe on a CNC machine tool. Metrology and Hallmark, Central Office of Measures. In press.
Google Scholar
Kulisz, M., Kujawska, J., Aubakirova, Z., Zhairbaeva, G. & Warowny, T. (2022c). Prediction of the compressive strength of environmentally friendly concrete using artificial neural network. Applied Computer Science, 18(4), 68–81. https://doi.org/10.35784/ACS-2022-29
DOI: https://doi.org/10.35784/acs-2022-29
Google Scholar
Kwon, Y., Jeong, M. K. & Omitaomu, O. A. (2006a). Adaptive support vector regression analysis of closed-loop inspection accuracy. International Journal of Machine Tools and Manufacture, 46(6), 603–610. https://doi.org/10.1016/J.IJMACHTOOLS.2005.07.011
DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.011
Google Scholar
Kwon, Y., Tseng, T. L. & Ertekin, Y. (2006b). Characterization of closed-loop measurement accuracy in precision CNC milling. Robotics and Computer-Integrated Manufacturing, 22(4), 288–296. https://doi.org/10.1016/J.RCIM.2005.06.002
DOI: https://doi.org/10.1016/j.rcim.2005.06.002
Google Scholar
Li, K.-M. & Liang, S. Y. (2006). Modeling of cutting temperature in near dry machining. Journal of Manufacturing Science and Engineering, 128(2), 416–424. https://doi.org/10.1115/1.2162907
DOI: https://doi.org/10.1115/1.2162907
Google Scholar
Moriwaki, T., Horiuchi, A. & Okuda, K. (1990). Effect of cutting heat on machining accuracy in ultra-precision diamond turning. CIRP Annals, 39(1), 81–84. https://doi.org/10.1016/S0007-8506(07)61007-5
DOI: https://doi.org/10.1016/S0007-8506(07)61007-5
Google Scholar
Olszak, W. (2008). Obróbka Skrawaniem. WNT.
Google Scholar
Pieśko, P., Zawada-Michałowska, M. & Józwik, J. (2023). Influence of thermal deformations on accuracy measurement with an inspection probe. 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp. 280–284). IEEE. https://doi.org/10.1109/METROAEROSPACE57412.2023.10190043
DOI: https://doi.org/10.1109/MetroAeroSpace57412.2023.10190043
Google Scholar
Putz, M., Schmidt, G., Semmler, U., Oppermann, C., Bräunig, M. & Karagüzel, U. (2016). Modeling of heat fluxes during machining and their effects on thermal deformation of the cutting tool. Procedia CIRP, 46, 611–614. https://doi.org/10.1016/J.PROCIR.2016.04.046
DOI: https://doi.org/10.1016/j.procir.2016.04.046
Google Scholar
Sałamacha, D. & Józwik, J. (2023). Evaluation of measurement uncertainty obtained with a tool probe on a CNC machine tool. MANUFACTURING TECHNOLOGY, 23(4), 513–524. https://doi.org/10.21062/mft.2023.051
DOI: https://doi.org/10.21062/mft.2023.051
Google Scholar
Shi, H., Xiao, Y., Mei, X., Tao, T. & Wang, H. (2023). Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line. ISA Transactions, 135, 575–584. https://doi.org/10.1016/J.ISATRA.2022.09.043
DOI: https://doi.org/10.1016/j.isatra.2022.09.043
Google Scholar
Wang, S., To, S., Chan, C. Y., Cheung, C. F. & Lee, W. B. (2010). A study of the cutting-induced heating effect on the machined surface in ultra-precision raster milling of 6061 Al alloy. International Journal of Advanced Manufacturing Technology, 51, 69–78. https://doi.org/10.1007/s00170-010-2613-7
DOI: https://doi.org/10.1007/s00170-010-2613-7
Google Scholar
Weck, M., McKeown, P., Bonse, R. & Herbst, U. (1995). Reduction and compensation of thermal errors in machine tools. CIRP Annals, 44(2), 589–598. https://doi.org/10.1016/S0007-8506(07)60506-X
DOI: https://doi.org/10.1016/S0007-8506(07)60506-X
Google Scholar
Authors
Jerzy JÓZWIKPoland
Authors
Magdalena ZAWADA-MICHAŁOWSKAPoland
Authors
Monika KULISZPoland
Authors
Paweł TOMIŁOPoland
Authors
Marcin BARSZCZPoland
Authors
Michał LELEŃPoland
Authors
Kamil CYBULPoland
Statistics
Abstract views: 214PDF downloads: 64
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL, IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY , Applied Computer Science: Vol. 19 No. 3 (2023)
- Monika KULISZ, Aigerim DUISENBEKOVA, Justyna KUJAWSKA, Danira KALDYBAYEVA, Bibigul ISSAYEVA, Piotr LICHOGRAJ, Wojciech CEL, IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY , Applied Computer Science: Vol. 19 No. 4 (2023)
- Sylwester KORGA, Kamil ŻYŁA, Jerzy JÓZWIK, Jarosław PYTKA, Kamil CYBUL, PREDICTIVE TOOLS AS PART OF DECISSION AIDING PROCESSES AT THE AIRPORT – THE CASE OF FACEBOOK PROPHET LIBRARY , Applied Computer Science: Vol. 19 No. 4 (2023)
- Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA, USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY , Applied Computer Science: Vol. 13 No. 1 (2017)
- Monika KULISZ, EVALUATION OF SAP SYSTEM IMPLEMENTATION IN AN ENTERPRISE OF THE AUTOMOTIVE INDUSTRY – CASE STUDY , Applied Computer Science: Vol. 14 No. 4 (2018)
- Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY, PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 18 No. 4 (2022)
- Sylwester KORGA, Marcin BARSZCZ, Krzysztof DZIEDZIC, DEVELOPMENT OF SOFTWARE FOR IDENTIFICATION OF FILAMENTS USED IN 3D PRINTING TECHNOLOGY , Applied Computer Science: Vol. 15 No. 1 (2019)
Similar Articles
- Baldemar ZURITA, Luís LUNA, José HERNÁNDEZ, Federico RAMÍREZ, BOVW FOR CLASSIFICATION IN GEOMETRICS SHAPES , Applied Computer Science: Vol. 14 No. 4 (2018)
- Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, MODEL OF A COMPUTER SYSTEM FOR SELECTION OF OPERATING PARAMETERS FOR TRANSPORT VEHICLES IN THE ASPECT OF THEIR DURABILITY , Applied Computer Science: Vol. 14 No. 4 (2018)
- Moon-gee CHOI, USE OF SERIOUS GAMES FOR THE ASSESSMENT OF MILD COGNITIVE IMPAIRMENT IN THE ELDERLY , Applied Computer Science: Vol. 18 No. 2 (2022)
You may also start an advanced similarity search for this article.