Application of stereology in engineering of building materials
Article Sidebar
Open full text
Issue Vol. 14 No. 1 (2015)
-
The legal and technical possibilities of using of scaffoldings as the ramp for disabled persons
Ewa Błazik-Borowa, Michał Pieńko, Aleksander Robak005-014
-
3D printing, as a tool for planning orthopedic surgery
Małgorzata Cykowska-Błasiak, Paweł Ozga015-023
-
Evaluation of the decision maker's preferences in the selection means of transport
Artur Duchaczek025-031
-
Architecture of spas in Krynica Zdroj
Paulina Filas-Zając033-042
-
Sulphate resistance of air entrained mortars with admixture of fly ashes
Monika Jaworska043-052
-
Optimization of selection process of constituent materials for high performance concrete and mortars
Nataliya Lushnikova053-064
-
DOP coefficients in GNSS observations
Kamil Maciuk065-072
-
Housing Estate of Workers Society in Warsaw’s Grochow
Karolina Matysiak073-091
-
On development of urban environment typology
Galina A. Osychenko093-104
-
Peculiarities of hydration processes of cements containing natural zeolite
Khrystyna Sobol, Taras Markiv, Volodymyr Terlyha, Wojciech Franus105-113
-
Application of stereology in engineering of building materials
Maciej Szeląg, Andrzej Szewczak115-125
-
Application of zeolites as fillers in mix asphalt
Agnieszka Woszuk, Lidia Bandura, Rafał Panek127-134
-
Forms of therapy of disabled children and role of architecture in this process
Jan Wrana135-143
-
The modifications to the requirements on energy savings and thermal insulation of buildings in Poland in the years 1974-2021
Anna Życzyńska, Tomasz Cholewa145-154
Archives
-
Vol. 16 No. 4
2019-10-14 14
-
Vol. 16 No. 3
2019-10-14 15
-
Vol. 16 No. 2
2019-10-14 12
-
Vol. 16 No. 1
2019-10-15 20
-
Vol. 15 No. 4
2019-10-17 19
-
Vol. 15 No. 3
2019-10-15 13
-
Vol. 15 No. 2
2019-10-16 14
-
Vol. 15 No. 1
2019-10-09 28
-
Vol. 14 No. 4
2020-04-07 19
-
Vol. 14 No. 3
2020-04-15 25
-
Vol. 14 No. 2
2020-04-20 15
-
Vol. 14 No. 1
2020-04-25 14
-
Vol. 13 No. 4
2020-06-24 48
-
Vol. 13 No. 3
2020-06-24 43
-
Vol. 13 No. 2
2020-07-15 43
-
Vol. 13 No. 1
2020-07-15 30
-
Vol. 12 No. 4
2020-09-04 24
-
Vol. 12 No. 3
2020-09-04 35
-
Vol. 12 No. 2
2020-09-04 37
-
Vol. 12 No. 1
2020-09-04 37
Main Article Content
DOI
Authors
Abstract
The article presents the literature review about the application of stereology and image analysis for quantitative evaluation of the building materials structure. At the outset, the development of stereological methods and computer image analysis techniques in the study of building materials was provided. Then quantitative structure parameters were defined and their methods of determining were showed. In the paper, the application of image analysis for the determination of properties of the cement composites was reported, including: an assessment of the porosity of the hardened concrete, determination of the aggregate distribution in the cementitious matrix, the crack analysis. It was found that the leading problem of image analysis is the process of sample preparation in order to obtain the correct extraction of examinated phase, and measurement automation process.
Keywords:
References
Ryś J. Stereologia materiałów. Fotobit Design, Kraków, 1995.
Howe K., Eisenhart M. Standards for qualitative (and quantitative) research: A prolegomenon. Educational Researcher 19(4) (1990) 2-9.
Newman I. Qualitative-quantitative research methodology: Exploring the interactive continuum. SIU Press, Carbondale, 1988.
Prokopski G., Mechanika pękania betonów cementowych. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2007.
Chernyavskii K.S. Stereology in metal science. Metallurgiya, Moscow, 1977.
Underwood E.E., Starke Jr E.A. Quantitative stereological methods for analyzing important microstructural features in fatigue of metals and alloys. Georgia Inst of Tech Atlanta School of Chemical Engineering and Metallurgy, Atlanta, 1978.
Carpenter A.M. Stereology. Definition and historic background. Journal of Histochemistry & Cytochemistry 27(11) (1979) 1535–1535. DOI: https://doi.org/10.1177/27.11.512342
Russ J.C. Practical stereology. Springer, 1986. DOI: https://doi.org/10.1007/978-1-4899-3533-5
Fic S., Barnat-Hunek D. The effectiveness of hydrophobisation of porous building materials by using the polymers and nanopolymers solutions. International Journal of Materials Science and Engineering 2(2) (2014) 93–98. DOI: https://doi.org/10.12720/ijmse.2.2.93-98
Fic S., Brzyski P., Szeląg M. Composite based on foam lime mortar with flax fibers for use in the building industry. Ecological Chemistry and Engineering A 20(7–8) (2013) 899–907.
Underwood E.E. Practical solutions to stereological problems. Practical Applications of Quantitative Metallography (1984) 160–179. DOI: https://doi.org/10.1520/STP30219S
Weibel E.R., Weibel E.R. Estimation of basic stereological parameters. Stereological methods 2 (1980) 55–139.
PN-EN 480-11: Domieszki do betonu, zapraw i zaczynu. Metody badań. Oznaczenie charakterystyki porów powietrznych w stwardniałym betonie.
PN-88/B-06250: Beton zwykły.
Konkol J. Kulpiński J. Prokopski G. Zastosowanie analizy obrazu do określania porowatości betonu na próbkach utwardzonych. Inżynieria Materiałowa 23 (2002) 737–742.
Konkol J., Prokopski G. Zastosowanie metody analizy obrazu do oceny struktury porów w materiałach budowlanych. Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska, Politechnika Rzeszowska, Rzeszów 2006, s. 271–276.
Konkol J., Prokopski G. Zastosowanie stereologii do oceny porowatości betonu. Fizyka Budowli w Teorii i Praktyce 2 (2007) 137–140.
Konkol J., Białek J. Zastosowanie metod stereologicznych do oceny mrozoodporności betonów napowietrzanych. Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska 57(4) (2010) 285–292.
Sumanasooriya M.S., Neithalath N. Stereology-and morphology-based pore structure descriptors of enhanced porosity (pervious) concretes. ACI Materials Journal 106(5) (2009) 429–438. DOI: https://doi.org/10.14359/51663143
Neithalath N., Sumanasooriya M.S., Deo O. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials characterization 61(8) (2010) 802–813. DOI: https://doi.org/10.1016/j.matchar.2010.05.004
Sumanasooriya M.S, Neithalath N. Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction. Cement and Concrete Composites 33(8) (2011) 778–787. DOI: https://doi.org/10.1016/j.cemconcomp.2011.06.002
Hu J., Stroeven P. Local porosity analysis of pore structure in cement paste. Cement and Concrete Research 35(2) (2005) 233–242. DOI: https://doi.org/10.1016/j.cemconres.2004.06.018
Hu J., Stroeven P. Depercolation threshold of porosity in model cement: approach by morphological evolution during hydration. Cement and Concrete Composites 27(1) (2005) 19–25.
Hu J., Stroeven P. Application of image analysis to assessing critical pore size for permeability prediction on cement paste. Image Analysis & Stereology 22(2) (2003) 97–103. DOI: https://doi.org/10.5566/ias.v22.p97-103
Hu J., Stroeven P. Size effect in structural analysis of cementitious materials. Proceedings of 9th European Congress on Stereology and Image Analysis, Polish Society for Stereology, Kraków 2005, s. 23–30.
Hilfer R. Geometric and dielectric characterization of porous media. Physical Review B 44(1) (1991) 60–75. DOI: https://doi.org/10.1103/PhysRevB.44.60
Igarashi S., Watanabe A., Kawamura M. Evaluation of capillary pore size characteristics in high-strength concrete at early ages. Cement and Concrete Research 35(3) (2005) 513–519. DOI: https://doi.org/10.1016/j.cemconres.2004.06.036
Igarashi S., Kawamura M., Watanabe A. Analysis of cement pastes and mortars by a combination of backscatter-based SEM image analysis and calculations based on the Powers model. Cement and Concrete Composites 26(8) (2004) 977–985. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.031
Powers T.C. Physical properties of cement paste Proceedings of the 4th International Symposium on the Chemistry of Cement, Washington 1960, s. 577-613.
PN-EN 933-1:2000 Badania geomterycznych właściwości kruszyw. Oznaczanie składu ziarnowego. Metoda przesiewu.
PN-EN 933-2:1999 Badania geometrycznych właściwości kruszyw. Oznaczenie składu ziarnowego. Nominalne wymiary otworów sit badawczych.
Konkol J. Analiza stereologiczna kruszywa w betonie - sposób uzyskania krzywej uziarnienia. Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska 47 (2008) 185–192.
Konkol J. Oznaczenie składu ziarnowego kruszywa w betonie metodami analizy obrazu. Inżynieria Materiałowa 31(6) (2010) 1409–1414.
Hu J., Stroeven P. Shape characterization of concrete aggregate. Image Analysis & Stereology 25 (2006) 43–53.
Mora C.F., Kwan A.K.H. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement and Concrete Research 30(3) (2000) 351–358. DOI: https://doi.org/10.1016/S0008-8846(99)00259-8
Kwan A.K.H., Mora C.F., Chan H.C. Particle shape analysis of coarse aggregate using digital image processing. Cement and Concrete Research 29(9) (1999) 1403–1410. DOI: https://doi.org/10.1016/S0008-8846(99)00105-2
Mora C.F., Kwan A.K.H., Chan H.C. Particle size distribution analysis of coarse aggregate using digital image processing. Cement and Concrete Research 28(6) (1998) 921–932. DOI: https://doi.org/10.1016/S0008-8846(98)00043-X
Lee J.R.J., Smith M.L., Smith L.N. A new approach to the three-dimensional quantification of angularity using image analysis of the size and form of coarse aggregates. Engineering Geology 91(2–4) (2007) 254–264. DOI: https://doi.org/10.1016/j.enggeo.2007.02.003
Nemati K.M., Monteiro P.J., Scrivener K.L. Analysis of compressive stress-induced cracks in concrete. ACI Materials Journal 95(5) (1998) 617–630. DOI: https://doi.org/10.14359/404
Ringot E., Bascoul A. About the analysis of microcracking in concrete. Cement and Concrete Composites 23(2–3) (2001) 261–266. DOI: https://doi.org/10.1016/S0958-9465(00)00056-1
Ringot E. Automatic quantification of microcracks network by stereological method of total projections in mortars and concretes. Cement and Concrete Research 18(1) (1988) 35–43. DOI: https://doi.org/10.1016/0008-8846(88)90119-6
Sinha S.K., Fieguth P.W. Automated detection of cracks in buried concrete pipe images. Automation in Construction 15(1) (2006) 58–72. DOI: https://doi.org/10.1016/j.autcon.2005.02.006
Sinha S.K., Fieguth P.W. Segmentation of buries concrete pipe images. Automation in Construction 15 (2005) 47–57.
Fujita Y., Mitani Y., Hamamoto Y. A method for crack detection on a concrete structure. Pattern Recognition 3 (2006) 901–904.
Article Details
Abstract views: 347
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
