APPLICATION OF NEURAL NETWORKS IN PREDICTION OF TENSILE STRENGTH OF ABSORBABLE SUTURES

Robert KARPIŃSKI

r.karpinski@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Jakub GAJEWSKI


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, (Poland)

Jakub SZABELSKI


Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin (Poland)

Dalibor BARTA


University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 01026 Zilina (Slovakia)

Abstract

The paper presents results of research on neural network application in forecasting the tensile strength of two types of sutures. The preliminary research was conducted in order to establish the accuracy of the proposed method and will be used for formulating further research areas. The neural network enabled evaluation of suture material degradation after 3-to-6-days’ exposure to Ringer’s solution. The encountered problems regarding inaccuracies show that developing a single model for sutures may be difficult or impossible. Therefore future research should be conducted for a single type of sutures only and require applying additional parameters for the neural network.


Keywords:

neural network application, forecasting, sutures tensile

Bollom, T., & Meister, K. (2013). Surgical principles: biodegradable materials in sports Medicine. In J. C. DeLee, D. J. Drez, & M. D. Miller (Eds.), DeLee & Drez's Orthopaedic Sports Medicine: Principles and Practice. 2nd edition. Philadelphia, PA: Saunders.
  Google Scholar

Casey, D. J., & Lewis, O.G. (1986). Absorbable and nonabsorbable sutures. In A.F. von Recum (Ed.), Handbook of biomaterials. Scientific and clinical testing of implant materials. New York: Macmillan.
  Google Scholar

Gajewski, J., Golewski, P., & Sadowski, T. (2017). Geometry optimization of a thin-walled element for an air structure using hybrid system integrating artificial neural network and finite element method. Composite Structures, 159, pp. 589–599. https://doi.org/10.1016/j.compstruct.2016.10.007
DOI: https://doi.org/10.1016/j.compstruct.2016.10.007   Google Scholar

Hasnaoui, H., Krea, M., & Roizard, D. (2017). Neural networks for the prediction of polymer permeability to gases. Journal of Membrane Science, 541, 541–549. https://doi.org/10.1016/j.memsci.2017.07.031
DOI: https://doi.org/10.1016/j.memsci.2017.07.031   Google Scholar

Karpiński, R., Górniak, B., Szabelski, J., & Szala, M. (2016b). Charakterystyka i podział materiałów szewnych, In B. Zdunek, & M. Szklarczyk (Eds.), Wybrane zagadnienia z biologii molekularnej oraz inżynierii materiałowej (pp. 127–139). Lublin: Wydawnictwo Naukowe TYGIEL Sp. z. o. o.
  Google Scholar

Karpiński, R., Górniak, B., Szabelski, J., & Szala, M. (2016a). Historia chirurgii i materiałów szewnych, In B. Zdunek, & M. Szklarczyk (Eds.), Wybrane zagadnienia z biologii molekularnej oraz inżynierii materiałowej (pp. 140–150). Lublin: Wydawnictwo Naukowe TYGIEL Sp. z. o. o.
  Google Scholar

Karpiński, R., Szabelski, J., & Maksymiuk, J. (2017). Effect of Ringer's Solution on Tensile Strength of Non-Absorbable, Medium- and Long-Term Absorbable Sutures. Advances in Science and Technology Research Journal, 11(4), 11-20. https://doi.org/10.12913/22998624/76084
DOI: https://doi.org/10.12913/22998624/76084   Google Scholar

Krysicki, W., Bartos, J., Dyczka, W., Królikowska, K., & Wasilewski, M. (1999). Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach. część II. Statystyka matematyczna. Wydanie Szóste. Warszawa: Wydawnictwo Naukowe PWN.
  Google Scholar

Lv, H., & Zheng, Y. (2017). A newly developed tridimensional neural network for prediction of the phase equilibria of six aqueous two-phase systems. Journal of Industrial and Engineering Chemistry, 57, 377–386. https://doi.org/10.1016/j.jiec.2017.08.046
DOI: https://doi.org/10.1016/j.jiec.2017.08.046   Google Scholar

Rabiej, M. (2012). Statystyka z programem Statistica. Gliwice: Helion.
  Google Scholar

Youshia, J., Ali, M. E., & Lamprecht, A. (2017). Artificial neural network based particle size prediction of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 119, 333–342. https://doi.org/10.1016/j.ejpb.2017.06.030
DOI: https://doi.org/10.1016/j.ejpb.2017.06.030   Google Scholar

Luo, Y. (2017). Recurrent neural networks for classifying relations in clinical notes. Journal of Biomedical Informatics, 72, 85–95.
DOI: https://doi.org/10.1016/j.jbi.2017.07.006   Google Scholar

Zapalski, S., & Chęciński, P. (1999). Szwy chirurgiczne: wybrane problemy. Bielsko-Biała: AlfaMedica Press.
  Google Scholar

Zurek, M., Kajzer, A., Basiaga, M., & Jendruś, R. (2016). Właściwości wytrzymałościowe wybranych polimerowych nici chirurgicznych. Polimery, 61 (5), 334–338. https://doi.org/10.14314/polimery.2016.334
DOI: https://doi.org/10.14314/polimery.2016.334   Google Scholar

Download


Published
2017-12-30

Cited by

KARPIŃSKI, R. ., GAJEWSKI, J. ., SZABELSKI, J. ., & BARTA, D. (2017). APPLICATION OF NEURAL NETWORKS IN PREDICTION OF TENSILE STRENGTH OF ABSORBABLE SUTURES. Applied Computer Science, 13(4), 76–86. https://doi.org/10.23743/acs-2017-31

Authors

Robert KARPIŃSKI 
r.karpinski@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Jakub GAJEWSKI 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland

Authors

Jakub SZABELSKI 

Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Dalibor BARTA 

University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 01026 Zilina Slovakia

Statistics

Abstract views: 149
PDF downloads: 14


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.