APPLICATION OF NEURAL NETWORKS IN PREDICTION OF TENSILE STRENGTH OF ABSORBABLE SUTURES
Robert KARPIŃSKI
r.karpinski@pollub.plLublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)
Jakub GAJEWSKI
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, (Poland)
Jakub SZABELSKI
Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin (Poland)
Dalibor BARTA
University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 01026 Zilina (Slovakia)
Abstract
The paper presents results of research on neural network application in forecasting the tensile strength of two types of sutures. The preliminary research was conducted in order to establish the accuracy of the proposed method and will be used for formulating further research areas. The neural network enabled evaluation of suture material degradation after 3-to-6-days’ exposure to Ringer’s solution. The encountered problems regarding inaccuracies show that developing a single model for sutures may be difficult or impossible. Therefore future research should be conducted for a single type of sutures only and require applying additional parameters for the neural network.
Keywords:
neural network application, forecasting, sutures tensileReferences
Bollom, T., & Meister, K. (2013). Surgical principles: biodegradable materials in sports Medicine. In J. C. DeLee, D. J. Drez, & M. D. Miller (Eds.), DeLee & Drez's Orthopaedic Sports Medicine: Principles and Practice. 2nd edition. Philadelphia, PA: Saunders.
Google Scholar
Casey, D. J., & Lewis, O.G. (1986). Absorbable and nonabsorbable sutures. In A.F. von Recum (Ed.), Handbook of biomaterials. Scientific and clinical testing of implant materials. New York: Macmillan.
Google Scholar
Gajewski, J., Golewski, P., & Sadowski, T. (2017). Geometry optimization of a thin-walled element for an air structure using hybrid system integrating artificial neural network and finite element method. Composite Structures, 159, pp. 589–599. https://doi.org/10.1016/j.compstruct.2016.10.007
DOI: https://doi.org/10.1016/j.compstruct.2016.10.007
Google Scholar
Hasnaoui, H., Krea, M., & Roizard, D. (2017). Neural networks for the prediction of polymer permeability to gases. Journal of Membrane Science, 541, 541–549. https://doi.org/10.1016/j.memsci.2017.07.031
DOI: https://doi.org/10.1016/j.memsci.2017.07.031
Google Scholar
Karpiński, R., Górniak, B., Szabelski, J., & Szala, M. (2016b). Charakterystyka i podział materiałów szewnych, In B. Zdunek, & M. Szklarczyk (Eds.), Wybrane zagadnienia z biologii molekularnej oraz inżynierii materiałowej (pp. 127–139). Lublin: Wydawnictwo Naukowe TYGIEL Sp. z. o. o.
Google Scholar
Karpiński, R., Górniak, B., Szabelski, J., & Szala, M. (2016a). Historia chirurgii i materiałów szewnych, In B. Zdunek, & M. Szklarczyk (Eds.), Wybrane zagadnienia z biologii molekularnej oraz inżynierii materiałowej (pp. 140–150). Lublin: Wydawnictwo Naukowe TYGIEL Sp. z. o. o.
Google Scholar
Karpiński, R., Szabelski, J., & Maksymiuk, J. (2017). Effect of Ringer's Solution on Tensile Strength of Non-Absorbable, Medium- and Long-Term Absorbable Sutures. Advances in Science and Technology Research Journal, 11(4), 11-20. https://doi.org/10.12913/22998624/76084
DOI: https://doi.org/10.12913/22998624/76084
Google Scholar
Krysicki, W., Bartos, J., Dyczka, W., Królikowska, K., & Wasilewski, M. (1999). Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach. część II. Statystyka matematyczna. Wydanie Szóste. Warszawa: Wydawnictwo Naukowe PWN.
Google Scholar
Lv, H., & Zheng, Y. (2017). A newly developed tridimensional neural network for prediction of the phase equilibria of six aqueous two-phase systems. Journal of Industrial and Engineering Chemistry, 57, 377–386. https://doi.org/10.1016/j.jiec.2017.08.046
DOI: https://doi.org/10.1016/j.jiec.2017.08.046
Google Scholar
Rabiej, M. (2012). Statystyka z programem Statistica. Gliwice: Helion.
Google Scholar
Youshia, J., Ali, M. E., & Lamprecht, A. (2017). Artificial neural network based particle size prediction of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 119, 333–342. https://doi.org/10.1016/j.ejpb.2017.06.030
DOI: https://doi.org/10.1016/j.ejpb.2017.06.030
Google Scholar
Luo, Y. (2017). Recurrent neural networks for classifying relations in clinical notes. Journal of Biomedical Informatics, 72, 85–95.
DOI: https://doi.org/10.1016/j.jbi.2017.07.006
Google Scholar
Zapalski, S., & Chęciński, P. (1999). Szwy chirurgiczne: wybrane problemy. Bielsko-Biała: AlfaMedica Press.
Google Scholar
Zurek, M., Kajzer, A., Basiaga, M., & Jendruś, R. (2016). Właściwości wytrzymałościowe wybranych polimerowych nici chirurgicznych. Polimery, 61 (5), 334–338. https://doi.org/10.14314/polimery.2016.334
DOI: https://doi.org/10.14314/polimery.2016.334
Google Scholar
Authors
Robert KARPIŃSKIr.karpinski@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Jakub GAJEWSKILublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland
Authors
Jakub SZABELSKILublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Dalibor BARTAUniversity of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 01026 Zilina Slovakia
Statistics
Abstract views: 149PDF downloads: 14
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK, Anna MACHROWSKA, Marcin MACIEJEWSKI, COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES , Applied Computer Science: Vol. 19 No. 4 (2023)
- Marcin MACIEJEWSKI, Barbara MACIEJEWSKA, Robert KARPIŃSKI, Przemysław KRAKOWSKI, ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS , Applied Computer Science: Vol. 16 No. 4 (2020)
- Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI, APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY , Applied Computer Science: Vol. 20 No. 2 (2024)
- Anna MACHROWSKA, Robert KARPIŃSKI, Józef JONAK, Jakub SZABELSKI, NUMERICAL PREDICTION OF THE COMPONENT-RATIO-DEPENDENT COMPRESSIVE STRENGTH OF BONE CEMENT , Applied Computer Science: Vol. 16 No. 3 (2020)
- Robert KARPIŃSKI, Anna MACHROWSKA, Marcin MACIEJEWSKI, APPLICATION OF ACOUSTIC SIGNAL PROCESSING METHODS IN DETECTING DIFFERENCES BETWEEN OPEN AND CLOSED KINEMATIC CHAIN MOVEMENT FOR THE KNEE JOINT , Applied Computer Science: Vol. 15 No. 1 (2019)
- Robert KARPIŃSKI, Józef JONAK, Jacek MAKSYMIUK, MEDICAL IMAGING AND 3D RECONSTRUCTION FOR OBTAINING THE GEOMETRICAL AND PHYSICAL MODEL OF A CONGENITAL BILATERAL RADIO-ULNAR SYNOSTOSIS , Applied Computer Science: Vol. 14 No. 1 (2018)
- Anna MACHROWSKA, Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK, DIAGNOSTIC FACTORS FOR OPENED AND CLOSED KINEMATIC CHAIN OF VIBROARTHROGRAPHY SIGNALS , Applied Computer Science: Vol. 15 No. 3 (2019)
- Przemysław KRAKOWSKI, Józef JONAK, Robert KARPIŃSKI, Łukasz JAWORSKI, USEFULNESS OF RAPID PROTOTYPING IN PLANNING COMPLEX TRAUMA SURGERIES , Applied Computer Science: Vol. 15 No. 3 (2019)
- Przemysław KRAKOWSKI, Robert KARPIŃSKI, Marcin MACIEJEWSKI, APPLICATIONS OF MODERN IMAGING TECHNOLOGY IN ORTHOPAEDIC TRAUMA SURGERY , Applied Computer Science: Vol. 14 No. 3 (2018)
Similar Articles
- Wieslaw FRĄCZ, Grzegorz JANOWSKI, INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES , Applied Computer Science: Vol. 13 No. 3 (2017)
- Hamid JAN, Beena HAMID, THE APPLICATION OF FINGERPRINTS AUTHENTICATION IN DISTANCE EDUCATION , Applied Computer Science: Vol. 15 No. 3 (2019)
- Wiesław FRĄCZ, Grzegorz JANOWSKI, Grażyna RYZIŃSKA, THE POSSIBILITY OF USING WOOD FIBER MATS IN PRODUCTS MANUFACTURING MADE OF POLYMER COMPOSITES BASED ON NUMERICAL SIMULATIONS , Applied Computer Science: Vol. 13 No. 4 (2017)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Konrad KANIA, Mariusz MAZUREK, Tomasz RYMARCZYK, APPLICATION OF FINITE DIFFERENCE METHOD FOR MEASUREMENT SIMULATION IN ULTRASOUND TRANSMISSION TOMOGRAPHY , Applied Computer Science: Vol. 18 No. 2 (2022)
- Andrij MILENIN, PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE , Applied Computer Science: Vol. 18 No. 3 (2022)
- Agnieszka ZACHCIAŁ, Andrzej JARDZIOCH, APPLICATION OF SIMULATION RESEARCH TO ANALYSE THE PRODUCTION PROCESS IN TERMS OF SUSTAINABLE DEVELOPMENT , Applied Computer Science: Vol. 18 No. 3 (2022)
- Krzysztof OSTROWSKI, AN EFFECTIVE METAHEURISTIC FOR TOURIST TRIP PLANNING IN PUBLIC TRANSPORT NETWORKS , Applied Computer Science: Vol. 14 No. 2 (2018)
- Mohanad ABDULHAMID, Otieno ODONDI, Muaayed AL-RAWI, COMPUTER VISION BASED ON RASPBERRY PI SYSTEM , Applied Computer Science: Vol. 16 No. 4 (2020)
- Jarosław GIL, Andrzej POLAŃSKI, APPLICATION OF GILLESPIE ALGORITHM FOR SIMULATING EVOLUTION OF FITNESS OF MICROBIAL POPULATION , Applied Computer Science: Vol. 18 No. 4 (2022)
You may also start an advanced similarity search for this article.