VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM FOR IMAGING DATA
Jolanta Podolszańska
jolanta.podolszanska@outlook.comCzęstochowa University of Technology (Poland)
https://orcid.org/0000-0002-6032-5654
Abstract
This paper presents the research results on the design of a three-dimensional head phantom for cone beam projection. The head model is based on a Shepp-Logan mathematical head model, which is used to simulate the operation of the CT scanner. The model is then compared with the reference data for structural similarity, reasoning, and shape. The geometric parameters of the obtained images are investigated. The reconstructed image is analyzed using the FDK method. The results show that the geometric parameters directly correlate with the number of projections. A mathematical framework of cone beam 3d reconstruction via the first derivative of the radon transform is presented.
Keywords:
computed tomography, FDK reconstruction, 3D mathematics phantom model, Shepp-Logan phantomReferences
Batur A. et al.: Hounsfield unit density in the characterization of bile duct lesions. Polish Journal of Radiology 84, 2019, 397–401.
DOI: https://doi.org/10.5114/pjr.2019.89390
Google Scholar
Dzierżak R., et al.: The influence of the normalization of spinal CT images on the significance of textural features in identifying defects in the spongy tissue structure. Innovations in Biomedical Engineering. Springer International Publishing, 2019.
DOI: https://doi.org/10.1007/978-3-030-15472-1_7
Google Scholar
Hansen P. C. et al.: Computed tomography: algorithms, insight, and just enough theory. Society for Industrial and Applied Mathematics, 2021.
DOI: https://doi.org/10.1137/1.9781611976670
Google Scholar
Ilmavirta J., Monkkonen K.: X-ray tomography of one-forms with partial data. SIAM Journal on Mathematical Analysis 53(3), 2021, 3002–3015.
DOI: https://doi.org/10.1137/20M1344779
Google Scholar
Panetta D., Camarlinghi N.: 3D Image Reconstruction for CT and PET: A Practical Guide with Python. CRC Press 2020, 65–73.
DOI: https://doi.org/10.1201/9780429270239
Google Scholar
Senchukova A.: Learned image reconstruction in X-ray computed tomography, 2020.
Google Scholar
Sun W. et al.: Review of high energy x-ray computed tomography for non-destructive dimensional metrology of large metallic advanced manufactured components. Reports on Progress in Physics 85(1), 2022, 016102.
DOI: https://doi.org/10.1088/1361-6633/ac43f6
Google Scholar
Tadeusiewicz R.: Komputerowe systemy wizyjne w zastosowaniach przemysłowych. Utrzymanie Ruchu 3, 2019, 14–21.
Google Scholar
Withers P. J. et al.: X-ray computed tomography. Nature Reviews Methods Primers 1(1), 2021, 18.
DOI: https://doi.org/10.1038/s43586-021-00015-4
Google Scholar
Xu X. et al.: Review of electromagnetic vibration in electrical machines. Energies 11(7), 2018, 1779.
DOI: https://doi.org/10.3390/en11071779
Google Scholar
Zuo C. et al.: Transport of intensity equation: a tutorial. Optics and Lasers in Engineering 135, 2020, 106187.
DOI: https://doi.org/10.1016/j.optlaseng.2020.106187
Google Scholar
Authors
Jolanta Podolszańskajolanta.podolszanska@outlook.com
Częstochowa University of Technology Poland
https://orcid.org/0000-0002-6032-5654
Statistics
Abstract views: 154PDF downloads: 128
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.