[1] Bijjahalli S., Sabatini R., Gardi A.: GNSS performance modelling and augmentation for urban air mobility. Sensors 19, 2019, 4209 [https://doi.org/10.3390/s19194209].
DOI: https://doi.org/10.3390/s19194209
[2] Isik O. K., Hong J., Petrunin I., Tsourdos A.: Integrity Analysis for GPS-Based Navigation of UAVs in Urban Environment. Robotics 9(3), 2020, 66.
DOI: https://doi.org/10.3390/robotics9030066
[3] Kaplan E. D., Hegarty C. L.: Understanding GPS/GNSS. Principles and Applications. Artech House, London 2017.
[4] Konin V. V., Kharchenko V. P.: Satellite radio navigation systems. Holtech, Kiev 2010.
[5] Kossenko V., Crechkoseev A., Fatkulin R.: GLONASS space segment. Status & Modernization Joint - Stock Company "Academician M.F. Reshetnev" Information Satellite Systems ICG-7, November 04-09.2012, Beijing, China.
[6] Lin F. et al.: Vehicle integrated navigation IMU mounting angles estimation method based on nonlinear optimization. Measurement Science and Technology 35(3), 2024, 036304 [https://doi.org/10.1088/1361-6501/ad1369].
DOI: https://doi.org/10.1088/1361-6501/ad1369
[7] Mori Gonzalez G. et al.: Vulnerability analysis of GPS receiver software. Proceedings of the 2019 International Conference on Localization and GNSS, ICL-GNSS 2019, Nuremberg, Germany, 8–22 March 2019.
DOI: https://doi.org/10.1109/ICL-GNSS.2019.8752862
[8] Nagai K. et al.: Fault-Free Integrity of Urban Driverless Vehicle Navigation with Multi-Sensor Integration: A Case Study in Downtown Chicago. Navigation, Journal of the Institute of Navigation 71(1), 2024, 631 [https://doi.org/10.33012/navi.631].
DOI: https://doi.org/10.33012/navi.631
[9] Oleynik E., Revnivykh S.: GLONASS Status and Modernization. CGSIG Meeting, September 2011 [https://www.gps.gov/cgsic/ meetings/2011/revnivykh.pdf].
[10] Savchenko V. et al.: Model of an alternative navigation system for high-precision weapons. Journal of Defense Modeling and Simulation 19(3), 2022, 255–262 [https://doi.org/10.1177/1548512920921955].
DOI: https://doi.org/10.1177/1548512920921955
[11] Savchenko V. et al.: The model of accuracy of a local radio navigation system considering unstable performance of individual elements. Eastern-European Journal of Enterprise Technologies 3(9), 2016, 4–10 [https://doi.org/10.15587/1729-4061.2016.71921].
DOI: https://doi.org/10.15587/1729-4061.2016.71921
[12] Shin Y., Kim E.: PF-DOP hybrid path planning for safe and efficient navigation of unmanned vehicle systems. 31st International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, FL, USA, 24–28 September 2018, 2501–2517 [https://doi.org/10.33012/2018.15978].
DOI: https://doi.org/10.33012/2018.15978
[13] Wang K., Chen P., Teunissen P. L. G.: Single-epoch, single-fre Guency multi-GNSS l5 RTK under high-elevation masking. Sensors 19, 2019, 1066.
DOI: https://doi.org/10.3390/s19051066
[14] Wang Y. et al.: Measurement Quality Control Aided Multisensor System for Improved Vehicle Navigation in Urban Areas. IEEE Transactions on Industrial Electronics 71(6), 2024, 6407–6417 [https://doi.org/10.1109/TIE.2023.3288188].
DOI: https://doi.org/10.1109/TIE.2023.3288188
[15] Xu R. et al.: Performance Analysis of GNSS/INS Loosely Coupled Integration Systems under Spoofing Attacks. Sensors 18, 2018, 4108 [https://doi.org/10.3390/S18124108].
DOI: https://doi.org/10.3390/s18124108
[16] https://glonass-iac.ru/glonass/sostavOG/
[17] https://studfile.net/preview/6154645/page:12/