[1] Ahmed W. et al.: A social network analysis of Twitter data related to blood clots and vaccines. International Journal of Environmental Research and Public Health 19(8), 2022, 4584.
DOI: https://doi.org/10.3390/ijerph19084584
[2] Ahmed W. et al.: COVID-19 and the 5G conspiracy theory: social network analysis of Twitter data. Journal of medical internet research 22(5), 2020, e19458.
DOI: https://doi.org/10.2196/19458
[3] Asur S., Huberman B. A.: Predicting the future with social media. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology 1, 2010.
DOI: https://doi.org/10.1109/WI-IAT.2010.63
[4] Bilbao-Jayo A., Almeida A.: Improving political discourse analysis on twitter with context analysis. IEEE Access 9, 2021, 104846–104863.
DOI: https://doi.org/10.1109/ACCESS.2021.3099093
[5] Du Y. J. et al.: Extracting and tracking hot topics of micro-blogs based on improved Latent Dirichlet Allocation. Engineering Applications of Artificial Intelligence 87, 2020, 103279.
DOI: https://doi.org/10.1016/j.engappai.2019.103279
[6] Elbagir S., Yang J.: Twitter sentiment analysis using natural language toolkit and VADER sentiment. International Multiconference of Engineers and Computer Scientists 122(16), 2019.
DOI: https://doi.org/10.1142/9789811215094_0005
[7] Heo S. M., Yang J. Y.: Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA). Journal of The Korea Society of Computer and Information 25(12), 2020, 83–91.
[8] Madani A. et al.: Real-time trending topics detection and description from Twitter content. Social Network Analysis and Mining 5(1), 2015, 59.
DOI: https://doi.org/10.1007/s13278-015-0298-5
[9] Mediayani M. et al.: Determining Trending Topics in Twitter with a Data Streaming Method in R. Indonesian Journal of Science and Technology 4(1), 2019, 148–157.
DOI: https://doi.org/10.17509/ijost.v4i1.15807
[10] Nabizath S.: An ensemble classification system for twitter sentiment analysis. Procedia Computer Science 132, 2018, 937–946.
DOI: https://doi.org/10.1016/j.procs.2018.05.109
[11] Negara E. S. et al.: Topic modelling twitter data with latent Dirichlet allocation method. International Conference on Electrical Engineering and Computer Science (ICECOS). IEEE, 2019.
DOI: https://doi.org/10.1109/ICECOS47637.2019.8984523
[12] Nurrahmi H. et al.: Twitter data transformation for network visualization based context analysis. International Conference on Information and Communications Technology (ICOIACT). IEEE, 2018.
DOI: https://doi.org/10.1109/ICOIACT.2018.8350699
[13] Qi Y., Zahratu S.: Sentiment analysis using Twitter data: a comparative application of lexicon-and machine-learning-based approach. Social Network Analysis and Mining 13(1), 2023, 31.
DOI: https://doi.org/10.1007/s13278-023-01030-x
[14] Saif H. et al.: Semantic sentiment analysis of twitter. The Semantic Web–ISWC 2012: 11th International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Part I 11. Springer Berlin Heidelberg, 2012.
[15] Song Z., Jianhong C. X.: Spatial and temporal sentiment analysis of twitter data. European handbook of crowdsourced geographic information 205, 2016.
DOI: https://doi.org/10.5334/bax.p