Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Twitter's tremendous impact extends from national to international affairs, covering domains such as religion, entertainment, environment, and politics. Unlike other social media platforms, Twitter offers researchers an open data source for multifaceted studies, motivating us to delve into regional trending topics, analyzing associated sentiments, context, networks, and temporal patterns. Using machine learning techniques combined with the VADER algorithm, we conducted a comprehensive analysis involving text, metadata, contextual cues, media, links, and historical data. In this study, we conducted an extensive Twitter mining operation on June 6, 2024, focusing on the ten most developed countries to explore sentiments associated with sustainable technology in industry. The insights derived from this research are pivotal for policymakers, industry stakeholders, and researchers, offering a nuanced understanding of public opinion on sustainable technology. Our findings underscore the potential of social media mining as a powerful tool for gauging public sentiment and informing strategic decision-making in the realm of sustainable industrial practices.
Keywords:
References
[1] Ahmed W. et al.: A social network analysis of Twitter data related to blood clots and vaccines. International Journal of Environmental Research and Public Health 19(8), 2022, 4584. DOI: https://doi.org/10.3390/ijerph19084584
[2] Ahmed W. et al.: COVID-19 and the 5G conspiracy theory: social network analysis of Twitter data. Journal of medical internet research 22(5), 2020, e19458. DOI: https://doi.org/10.2196/19458
[3] Asur S., Huberman B. A.: Predicting the future with social media. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology 1, 2010. DOI: https://doi.org/10.1109/WI-IAT.2010.63
[4] Bilbao-Jayo A., Almeida A.: Improving political discourse analysis on twitter with context analysis. IEEE Access 9, 2021, 104846–104863. DOI: https://doi.org/10.1109/ACCESS.2021.3099093
[5] Du Y. J. et al.: Extracting and tracking hot topics of micro-blogs based on improved Latent Dirichlet Allocation. Engineering Applications of Artificial Intelligence 87, 2020, 103279. DOI: https://doi.org/10.1016/j.engappai.2019.103279
[6] Elbagir S., Yang J.: Twitter sentiment analysis using natural language toolkit and VADER sentiment. International Multiconference of Engineers and Computer Scientists 122(16), 2019. DOI: https://doi.org/10.1142/9789811215094_0005
[7] Heo S. M., Yang J. Y.: Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA). Journal of The Korea Society of Computer and Information 25(12), 2020, 83–91.
[8] Madani A. et al.: Real-time trending topics detection and description from Twitter content. Social Network Analysis and Mining 5(1), 2015, 59. DOI: https://doi.org/10.1007/s13278-015-0298-5
[9] Mediayani M. et al.: Determining Trending Topics in Twitter with a Data Streaming Method in R. Indonesian Journal of Science and Technology 4(1), 2019, 148–157. DOI: https://doi.org/10.17509/ijost.v4i1.15807
[10] Nabizath S.: An ensemble classification system for twitter sentiment analysis. Procedia Computer Science 132, 2018, 937–946. DOI: https://doi.org/10.1016/j.procs.2018.05.109
[11] Negara E. S. et al.: Topic modelling twitter data with latent Dirichlet allocation method. International Conference on Electrical Engineering and Computer Science (ICECOS). IEEE, 2019. DOI: https://doi.org/10.1109/ICECOS47637.2019.8984523
[12] Nurrahmi H. et al.: Twitter data transformation for network visualization based context analysis. International Conference on Information and Communications Technology (ICOIACT). IEEE, 2018. DOI: https://doi.org/10.1109/ICOIACT.2018.8350699
[13] Qi Y., Zahratu S.: Sentiment analysis using Twitter data: a comparative application of lexicon-and machine-learning-based approach. Social Network Analysis and Mining 13(1), 2023, 31. DOI: https://doi.org/10.1007/s13278-023-01030-x
[14] Saif H. et al.: Semantic sentiment analysis of twitter. The Semantic Web–ISWC 2012: 11th International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Part I 11. Springer Berlin Heidelberg, 2012.
[15] Song Z., Jianhong C. X.: Spatial and temporal sentiment analysis of twitter data. European handbook of crowdsourced geographic information 205, 2016. DOI: https://doi.org/10.5334/bax.p
Article Details
Abstract views: 203

