Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
kaf_dermatology@meduniv.lviv.ua
Abstract
The article is dedicated to the study of promising methods for determining the concentration of cholesterol, triglycerides, and phospholipids for the detection of psoriasis. It demonstrates that when interacting with cholesterol and triglycerides, the cholesteric-nematic mixture alters its spectral characteristics, in particular, which leads to a wavelength shift in the direction of the long-wavelength region. It is also shown that the liquid crystal mixture can serve as a sensitive element in an optical sensor for cholesterol and triglycerides and be one of the rapid diagnostic methods for detecting psoriasis.
Keywords:
References
[1] Andrushchenko M. et al.: Hand movement disorders tracking by smartphone based on computer vision methods. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(2), 2024, 5–10 [https://doi.org/10.35784/iapgos.6126]. DOI: https://doi.org/10.35784/iapgos.6126
[2] Avrunin O. et al.: Improving the methods for visualization of middle ear pathologies based on telemedicine services in remote treatment. KhPI Week on Advanced Technology, KhPI Week 2020, 347–350 [https://doi:10.1109/KhPIWeek51551.2020.9250090]. DOI: https://doi.org/10.1109/KhPIWeek51551.2020.9250090
[3] Arya S., Datta M., Malhotra B.: Recent advances in cholesterol biosensor. Biosensors and Bioelectronics 23, 2008, 1083–1100. DOI: https://doi.org/10.1016/j.bios.2007.10.018
[4] Brunzell J. D. et al.: Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American college of Cardiology Foundation. Diabetes Care 31, 2008, 811–822. DOI: https://doi.org/10.2337/dc08-9018
[5] Galuzinska L. V.: Study of changes in some biochemical blood parameters in patients with psoriasis. Ukrainian Biopharmaceutical Journal 5(40), 2015, 8–10.
[6] Kozlovska T. I. et al.: Optoelectronic multispectral device for determining the state of peripheral blood circulation. Proc. SPIE 11581, 2020, 115810L.
[7] Munir S., Park S. Y.: The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included β-cyclodextrin aqueous solution. Anal Chim Acta 893, 2015, 101–107. DOI: https://doi.org/10.1016/j.aca.2015.08.051
[8] Mykytyuk Z. M. et al.: Optical sensor with liquid crystal sensitive element for monitoring acetone vapor during exhalation. Molecular Crystals and Liquid Crystals 721(1), 2021, 24–29. DOI: https://doi.org/10.1080/15421406.2021.1905273
[9] Mykytyuk Z. M. et al.: Induced blue phase of cholesteric-nematic mixtures under the action of acetone vapors. Physics and Chemistry of Solid State 25(1), 2024, 109–113. DOI: https://doi.org/10.15330/pcss.25.1.109-113
[10] Rovira R. H. et al.: Polarimetric characterisation of histological section of skin with pathological changes. Proc. SPIE 10031, 2016, 100313E [https://doi.org/10.1117/12.2249373]. DOI: https://doi.org/10.1117/12.2249373
[11] Sundas M., Mashoog K., Soo-Young P.: Bienzyme liquid-crystal-based cholesterol biosensor. Sensors and Actuators B, Chemical 220, 2015, 1083–1100. DOI: https://doi.org/10.1016/j.snb.2015.05.117
[12] Vistak M. et al.: Optical biosensor on the base of cholesteric liquid crystals. 2nd International Conference on Advanced Information and Communication Technologies (AICT), Lviv, 4–7 July, 2017, 31–34.
[13] Vistak M. et al.: Optical triglycerides biosensor on the base of cholesteric liguid crystals. 2nd International Conference on Advanced Information and Communication Technologies, AICT 2017, 2017, 8020058, 31–34. DOI: https://doi.org/10.1109/AIACT.2017.8020058
[14] Vistak M. V. et al.: The optoelectronic sensor creatinine and urea. Proc. SPIE 10445, 104453Q, 2017. DOI: https://doi.org/10.1117/12.2280990
[15] Wójcik W. et al.: Information Technology in Medical Diagnostics. CRC Press, 2017. DOI: https://doi.org/10.1201/9781315098050
[16] Wójcik W. et al.: Information Technology in Medical Diagnostics II. Taylor & Francis Group. CRC Press, Balkema Book, London 2019. DOI: https://doi.org/10.1201/9780429057618
Article Details
Abstract views: 161

