Robust deepfake detection using Long Short-Term Memory networks for video authentication
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Developments achieved in recent years have propelled techniques for generating and manipulating multimedia content to attain an exceptionally high degree of realism. According to a survey, 25 percent of the videos viewers watch are fake. The increasingly blurred distinction between authentic and synthetic media presents significant security concerns, with the potential for exploitation in various domains. These threats encompass the manipulation of public opinion during electoral processes, perpetration of fraudulent activities, dissemination of disinformation to discredit individuals or entities, and the facilitation of blackmail schemes. Detecting fakes is tricky and difficult for viewers who are watching them, with studies showing that over 70 percent struggle to identify them accurately. To counter this issue, we envision this project whose primary goal is to construct a model that is capable of distinguishing between deepfake and authentic videos. Our proposed model operates at the video level, analyzing entire videos at once to provide a comprehensive assessment. The dataset utilized for training and evaluation is sourced from repositories such as DFDC, FaceForensics++ and Celeb-DF. The dataset sourced from DFDC and Celeb-Df are converted into frames from videos, in this architecture first face recognition tool is used for detecting the faces, followed by ResNext for feature extraction and then LSTM is used to classify the videos.
Keywords:
References
[1] Bonettini N. et al.: Video face manipulation detection through ensemble of cnns. 25th international conference on pattern recognition (ICPR). IEEE, 2021. DOI: https://doi.org/10.1109/ICPR48806.2021.9412711
[2] Cozzolino D. et al.: Id-reveal: Identity-aware deepfake video detection. IEEE/CVF International Conference on Computer Vision, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.01483
[3] Deng L., Suo H., Li D.: Deepfake Video Detection Based on EfficientNet‐V2 Network. Computational Intelligence and Neuroscience, 2022, 3441549. DOI: https://doi.org/10.1155/2022/3441549
[4] Gu Z. et al.: Spatiotemporal inconsistency learning for deepfake video detection. 29th ACM international conference on multimedia, 2021. DOI: https://doi.org/10.1145/3474085.3475508
[5] Ismail A. et al.: A new deep learning-based methodology for video deepfake detection using XGBoost. Sensors 21(16), 2021, 5413. DOI: https://doi.org/10.3390/s21165413
[6] Jung T., Kim S., Kim K.: Deepvision: Deepfakes detection using human eye blinking pattern. IEEE Access 8, 2020, 83144–83154. DOI: https://doi.org/10.1109/ACCESS.2020.2988660
[7] Khan S. A., Dai H.: Video transformer for deepfake detection with incremental learning. 29th ACM International Conference on Multimedia, 2021. DOI: https://doi.org/10.1145/3474085.3475332
[8] Kumar M., Sharma H. K.: A GAN-based model of deepfake detection in social media. Procedia Computer Science 218, 2023, 2153–2162. DOI: https://doi.org/10.1016/j.procs.2023.01.191
[9] Li X. et al.: Sharp multiple instance learning for deepfake video detection. 28th ACM International Conference on Multimedia, 2020. DOI: https://doi.org/10.1145/3394171.3414034
[10] Malik M. H. et al.: Frequency-based deep-fake video detection using deep learning methods. Journal of Computing & Biomedical Informatics 4(02), 2023, 41–48.
[11] Mittal T. et al.: Emotions don't lie: An audio-visual deepfake detection method using affective cues. 28th ACM International Conference on Multimedia, 2020. DOI: https://doi.org/10.1145/3394171.3413570
[12] Patel Y. et al.: Deepfake generation and detection: Case study and challenges. IEEE Access 11, 2023, 143296–143323. DOI: https://doi.org/10.1109/ACCESS.2023.3342107
[13] Tran V.-N. et al.: Generalization of forgery detection with meta deepfake detection model. IEEE Access 11, 2022, 535–546. DOI: https://doi.org/10.1109/ACCESS.2022.3232290
[14] Vashishtha S. et al.: Optifake: optical flow extraction for deepfake detection using ensemble learning technique. Multimedia Tools and Applications 83(32), 2024, 77509–77527 DOI: https://doi.org/10.1007/s11042-024-18641-x
[15] Wodajo D., Atnafu S.: Deepfake video detection using convolutional vision transformer. arXiv 2102.11126, 2021.
[16] Zhang L. et al.: Unsupervised learning-based framework for deepfake video detection. IEEE Transactions on Multimedia 25, 2022, 4785–4799. DOI: https://doi.org/10.1109/TMM.2022.3182509
[17] Zhao C. et al.: ISTVT: interpretable spatial-temporal video transformer for deepfake detection. IEEE Transactions on Information Forensics and Security 18, 2023, 1335–1348. DOI: https://doi.org/10.1109/TIFS.2023.3239223
[18] Zi B. et al.: Wilddeepfake: A challenging real-world dataset for deepfake detection. 28th ACM International Conference on Multimedia, 2020. DOI: https://doi.org/10.1145/3394171.3413769
Article Details
Abstract views: 259

