[1] Bonettini N. et al.: Video face manipulation detection through ensemble of cnns. 25th international conference on pattern recognition (ICPR). IEEE, 2021.
DOI: https://doi.org/10.1109/ICPR48806.2021.9412711
[2] Cozzolino D. et al.: Id-reveal: Identity-aware deepfake video detection. IEEE/CVF International Conference on Computer Vision, 2021.
DOI: https://doi.org/10.1109/ICCV48922.2021.01483
[3] Deng L., Suo H., Li D.: Deepfake Video Detection Based on EfficientNet‐V2 Network. Computational Intelligence and Neuroscience, 2022, 3441549.
DOI: https://doi.org/10.1155/2022/3441549
[4] Gu Z. et al.: Spatiotemporal inconsistency learning for deepfake video detection. 29th ACM international conference on multimedia, 2021.
DOI: https://doi.org/10.1145/3474085.3475508
[5] Ismail A. et al.: A new deep learning-based methodology for video deepfake detection using XGBoost. Sensors 21(16), 2021, 5413.
DOI: https://doi.org/10.3390/s21165413
[6] Jung T., Kim S., Kim K.: Deepvision: Deepfakes detection using human eye blinking pattern. IEEE Access 8, 2020, 83144–83154.
DOI: https://doi.org/10.1109/ACCESS.2020.2988660
[7] Khan S. A., Dai H.: Video transformer for deepfake detection with incremental learning. 29th ACM International Conference on Multimedia, 2021.
DOI: https://doi.org/10.1145/3474085.3475332
[8] Kumar M., Sharma H. K.: A GAN-based model of deepfake detection in social media. Procedia Computer Science 218, 2023, 2153–2162.
DOI: https://doi.org/10.1016/j.procs.2023.01.191
[9] Li X. et al.: Sharp multiple instance learning for deepfake video detection. 28th ACM International Conference on Multimedia, 2020.
DOI: https://doi.org/10.1145/3394171.3414034
[10] Malik M. H. et al.: Frequency-based deep-fake video detection using deep learning methods. Journal of Computing & Biomedical Informatics 4(02), 2023, 41–48.
[11] Mittal T. et al.: Emotions don't lie: An audio-visual deepfake detection method using affective cues. 28th ACM International Conference on Multimedia, 2020.
DOI: https://doi.org/10.1145/3394171.3413570
[12] Patel Y. et al.: Deepfake generation and detection: Case study and challenges. IEEE Access 11, 2023, 143296–143323.
DOI: https://doi.org/10.1109/ACCESS.2023.3342107
[13] Tran V.-N. et al.: Generalization of forgery detection with meta deepfake detection model. IEEE Access 11, 2022, 535–546.
DOI: https://doi.org/10.1109/ACCESS.2022.3232290
[14] Vashishtha S. et al.: Optifake: optical flow extraction for deepfake detection using ensemble learning technique. Multimedia Tools and Applications 83(32), 2024, 77509–77527
DOI: https://doi.org/10.1007/s11042-024-18641-x
[15] Wodajo D., Atnafu S.: Deepfake video detection using convolutional vision transformer. arXiv 2102.11126, 2021.
[16] Zhang L. et al.: Unsupervised learning-based framework for deepfake video detection. IEEE Transactions on Multimedia 25, 2022, 4785–4799.
DOI: https://doi.org/10.1109/TMM.2022.3182509
[17] Zhao C. et al.: ISTVT: interpretable spatial-temporal video transformer for deepfake detection. IEEE Transactions on Information Forensics and Security 18, 2023, 1335–1348.
DOI: https://doi.org/10.1109/TIFS.2023.3239223
[18] Zi B. et al.: Wilddeepfake: A challenging real-world dataset for deepfake detection. 28th ACM International Conference on Multimedia, 2020.
DOI: https://doi.org/10.1145/3394171.3413769