Statistical reliability of decisions on controlled process faults
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The article considers the issues of using control charts to detect the disruption of the technological process. The possible influence of measurement error on the correctness of decisions is considered. To ensure the statistical reliability of the decisions made, their plausibility, a priori probability is used. The effectiveness of assessing the compliance of the technological process with established standards is discussed, when the distributions of possible values of its parameters and errors of their measurements are uniform.
Keywords:
References
[1] Aslam M., Saghir A., Ahmad L.: Introduction to Statistical Process Control. John Wiley & Sons, 2020. DOI: https://doi.org/10.1002/9781119528425
[2] Colosimo B. M., del Castillo E.: Bayesian Process Monitoring, Control and Optimization. CRC Press: United States 2007. DOI: https://doi.org/10.1201/9781420010701
[3] Horst R., Hans-Joachim M.: Statistisch Methoden der Qualitätssicherung. Carl Hansen Verlag, Munchen Wien 1995.
[4] Johnson A. A., Ott M. Q., Dogucu M.: Bayes Rules! An Introduction to Applied Bayesian Modeling. CRC Press, United States 2022. DOI: https://doi.org/10.1201/9780429288340
[5] Khan I. et al.: Monitoring of manufacturing process using Bayesian EWMA control chart under ranked based sampling designs. Sci Rep 13, 2023, 18240 [https://doi.org/10.1038/s41598-023-45553-x]. DOI: https://doi.org/10.1038/s41598-023-45553-x
[6] Leon-Garcia A.: Probability, Statistics, and Random Processes for Electrical Engineering, 3rd edition. Pearson/Prentice Hall, USA 2008.
[7] Mitra A.: Fundamentals of Quality Control and Improvement. John Wiley & Sons, 2016.
[8] Montgomery D. C.: Introduction to Statistical Quality Control. 8th Edition. John Wiley & Sons, 2019.
[9] Reza Maleki M., Amiri A., Castagliola P.: Measurement Errors in Statistical Process Monitoring: a Literature Review. Computers & Industrial Engineering 103, 2016, 316–329 [http://dx.doi.org/10.1016/j.cie.2016.10.026]. DOI: https://doi.org/10.1016/j.cie.2016.10.026
[10] Volodarsky E., Warsza Z. L., Kosheva L.: Structural and algorithmic methods increasing reliability of measurement inspection. 25th National Scientific Symposium with int. participation: Metrology and Metrology Assurance, Sozopol, Sofia, Bulgaria, 2015, 55–59.
[11] Volodarsky E., Warsza Z., Kosheva L., Idźkowski A.: Method of upgrading the reliability of measurement inspection. Jabłoński R., Brezina T. (Eds.): Advanced Mechatronics Solutions (Advances in Intelligent Systems and Computing 393). Springer 2016, 431–440. DOI: https://doi.org/10.1007/978-3-319-23923-1_63
[12] Volodarsky E., Warsza Z., Kosheva L., Idźkowski A.: Precautionary statistical criteria in the monitoring quality of technological process. Szewczyk R., Kaliczyńska M. (Eds.): Recent Advances in Systems, Control and Information Technology. Int. Conference SCIT 2016, Warsaw, Poland, Springer Int. Pub. AG, 2017, 740–750 [https://doi.org/10.1007/978-3-319-48923-0]. DOI: https://doi.org/10.1007/978-3-319-48923-0_80
[13] Volodarsky E., Warsza Z., Kosheva L., Idźkowski A.: Transforming the conversion characteristic of a measuring system used in technical control. Szewczyk R., Kaliczyńska M. (Eds.): Recent Advances in Systems, Control and Information Technology. Proceeding of Int. Conference SCIT 2016, Warsaw, Poland, Springer Int. Pub. AG, 2017, 524–534 [https://doi.org/10.1007/978-3-319-48923-0]. DOI: https://doi.org/10.1007/978-3-319-48923-0_56
[14] Volodarskyi Y., Kozyr O., Kosheva L.: Impact of Measurement Procedure on Technological Process Control. XXXIV International Scientific Symposium Metrology and Metrology Assurance (MMA), Sozopol, Bulgaria, 2024, 1–5 [http://doi.org/10.1109/MMA62616.2024.10817633]. DOI: https://doi.org/10.1109/MMA62616.2024.10817633
[15] Volodarskyi Y., Kozyr O., Warsza Z. L.: Principal Components Method in Control Charts Analysis. Lecture Notes in Networks and Systems 630. Springer, Cham., 2023, 212–222 [https://doi.org/10.1007/978-3-031-25844-2_20]. DOI: https://doi.org/10.1007/978-3-031-25844-2_20
[16] Control charts – Part 2: Shewhart control charts, ISO 7870-2, 2013.
Article Details
Abstract views: 215

