[1] Alowais S. A. et al.: Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education 23(1), 2023, 689.
DOI: https://doi.org/10.1186/s12909-023-04698-z
[2] AR B. et al.: LCD-capsule network for the detection and classification of lung cancer on computed tomography images. Multimedia Tools and Applications 82(24), 2023, 37573–37592.
DOI: https://doi.org/10.1007/s11042-023-14893-1
[3] Azzi S. et al.: Healthcare applications of artificial intelligence and analytics: A review and proposed framework. Applied Sciences 10(18), 2020, 6553.
DOI: https://doi.org/10.3390/app10186553
[4] Bakchy S. Ch. et al.: A lightweight CNN model for efficient lung cancer detection and Grad-CAM visualization. International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), IEEE, 2023, 254–258.
DOI: https://doi.org/10.1109/ICICT4SD59951.2023.10303569
[5] Cai Ch. et al.: Improved deep convolutional neural networks using chimp optimization algorithm for COVID-19 diagnosis from X-ray images. Expert Systems with Applications 213, 2023, 119206.
DOI: https://doi.org/10.1016/j.eswa.2022.119206
[6] Chassagnon G. et al.: Artificial intelligence in lung cancer: Current applications and perspectives. Japanese Journal of Radiology 41(3), 2023, 235–244.
[7] Chattu V. K.: A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data and Cognitive Computing 5(3), 2021, 41.
DOI: https://doi.org/10.3390/bdcc5030041
[8] Currie G. et al.: Machine learning and deep learning in medical imaging: Intelligent imaging. Journal of Medical Imaging and Radiation Sciences 50(4), 2019, 477–487.
DOI: https://doi.org/10.1016/j.jmir.2019.09.005
[9] Dwivedi K. et al.: An explainable AI-driven biomarker discovery framework for non-small cell lung cancer classification. Computers in Biology and Medicine 153, 2023, 106544.
DOI: https://doi.org/10.1016/j.compbiomed.2023.106544
[10] Grechkin B. V. et al.: VGG convolutional neural network classification of hyperspectral images of skin neoplasms. Journal of Biomedical Photonics & Engineering 9(4), 2023, 040304.
DOI: https://doi.org/10.18287/JBPE23.09.040304
[11] Kobylińska K. et al.: Explainable machine learning for lung cancer screening models. Applied Sciences 12(4), 2022, 1926.
DOI: https://doi.org/10.3390/app12041926
[12] Lakshmanaprabu S. K. et al.: Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems 92, 2019, 374–382.
DOI: https://doi.org/10.1016/j.future.2018.10.009
[13] Leiter A., Veluswamy R. R., Wisnivesky J. P..: The global burden of lung cancer: Current status and future trends. Nature Reviews Clinical Oncology 20(9), 2023, 624–639.
DOI: https://doi.org/10.1038/s41571-023-00798-3
[14] Li C. et al.: Advances in lung cancer screening and early detection. Cancer Biology & Medicine 19(5), 2022, 591.
DOI: https://doi.org/10.20892/j.issn.2095-3941.2021.0690
[15] Liu Y. et al.: Radiologic features of small pulmonary nodules and lung cancer risk in the National Lung Screening Trial: A nested case-control study. Radiology 286(1), 2018, 298–306.
DOI: https://doi.org/10.1148/radiol.2017161458
[16] Mummaneni S. et al.: A comprehensive study: Intracranial aneurysm detection via VGG16-DenseNet hybrid deep learning on DSA images. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(1), 2024, 105–110.
DOI: https://doi.org/10.35784/iapgos.5804
[17] Pal M., Mistry S., De D.: Interpretability approaches of explainable AI in analyzing features for lung cancer detection. Frontiers of ICT in Healthcare: Proceedings of EAIT 2022, Springer Nature Singapore, 2023, 277–287.
DOI: https://doi.org/10.1007/978-981-19-5191-6_23
[18] Rahman A. et al.: NeuroXAI++: An efficient X-AI intensive brain cancer detection and localization. International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM), IEEE, 2023, 1–6.
DOI: https://doi.org/10.1109/NCIM59001.2023.10212818
[19] Rasool S. et al.: Harnessing predictive power: Exploring the crucial role of machine learning in early disease detection. JURIHUM: Jurnal Inovasi dan Humaniora 1(2), 2023, 302–315.
[20] Saman H. et al.: Non-invasive biomarkers for early lung cancer detection. Cancers 14(23), 2022, 5782.
DOI: https://doi.org/10.3390/cancers14235782
[21] Shafi I. et al.: An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network. Cancers 14(21), 2022, 5457.
DOI: https://doi.org/10.3390/cancers14215457
[22] Shamshirband S. et al.: A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. Journal of Biomedical Informatics 113, 2021, 103627.
DOI: https://doi.org/10.1016/j.jbi.2020.103627
[23] Shakeel P. M., Burhanuddin M. A., Desa M. I.: Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier. Neural Computing and Applications 34(15), 2022, 1–14.
[24] Shimazaki A. et al.: Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific Reports 12(1), 2022, 727.
DOI: https://doi.org/10.1038/s41598-021-04667-w
[25] Vliegenthart R. et al.: Innovations in thoracic imaging: CT, radiomics, AI, and x‐ray velocimetry. Respirology 27(10), 2022, 818–833.
DOI: https://doi.org/10.1111/resp.14344
[26] Xu K. et al.: AI body composition in lung cancer screening: Added value beyond lung cancer detection. Radiology 308(1), 2023, e222937.
DOI: https://doi.org/10.1148/radiol.222937
[27] Zhang C. et al.: Toward an expert level of lung cancer detection and classification using a deep convolutional neural network. The Oncologist 24(9), 2019, 1159–1165.
DOI: https://doi.org/10.1634/theoncologist.2018-0908
[28] Zhang J. et al.: Cyber resilience in healthcare digital twin on lung cancer. IEEE Access 8, 2020, 201900–201913.
DOI: https://doi.org/10.1109/ACCESS.2020.3034324