Explainable artificial intelligence for detecting lung cancer
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Early and reliable diagnosis of lung cancer is a major medical objective. This study makes a groundbreaking contribution to the field of smart healthcare by employing the capabilities of Explainable Artificial Intelligence (AI) and the Grad-CAM (Gradient-weighted Class Activation Mapping) visualization technique to improve lung cancer detection. The LIDC-IDRI dataset is used in the study to create a deep-learning model that can distinguish between benign and malignant lung diseases based on image features. This study demonstrates the importance of the Grad-CAM technique by highlighting the parts of medical images that have the most impact on the diagnostic choices made by the model. This method is in line with the developing norms of smart healthcare, where trust and transparency are of the utmost importance because it prioritizes classification accuracy and interpretability. The convincing findings of the study show that the model is highly accurate at distinguishing between benign and malignant instances. The model's diagnostic insights are equally impressive, but giving vivid and context-rich explanations really sets it apart. The model's usefulness in the actual world is boosted by incorporating the LIDC-IDRI dataset, which guarantees the diversity and authenticity of the data. This study provides a benchmark for progress in the field of smart healthcare since it balances cutting-edge AI capability with explainability. The results of this study could enhance patient outcomes by lowering mortality rates through earlier diagnosis and streamlining clinical processes. To fight lung cancer, AI-driven precision and interpretability offer a viable path through healthcare's complexity.
Keywords:
References
[1] Alowais S. A. et al.: Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Medical Education 23(1), 2023, 689. DOI: https://doi.org/10.1186/s12909-023-04698-z
[2] AR B. et al.: LCD-capsule network for the detection and classification of lung cancer on computed tomography images. Multimedia Tools and Applications 82(24), 2023, 37573–37592. DOI: https://doi.org/10.1007/s11042-023-14893-1
[3] Azzi S. et al.: Healthcare applications of artificial intelligence and analytics: A review and proposed framework. Applied Sciences 10(18), 2020, 6553. DOI: https://doi.org/10.3390/app10186553
[4] Bakchy S. Ch. et al.: A lightweight CNN model for efficient lung cancer detection and Grad-CAM visualization. International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), IEEE, 2023, 254–258. DOI: https://doi.org/10.1109/ICICT4SD59951.2023.10303569
[5] Cai Ch. et al.: Improved deep convolutional neural networks using chimp optimization algorithm for COVID-19 diagnosis from X-ray images. Expert Systems with Applications 213, 2023, 119206. DOI: https://doi.org/10.1016/j.eswa.2022.119206
[6] Chassagnon G. et al.: Artificial intelligence in lung cancer: Current applications and perspectives. Japanese Journal of Radiology 41(3), 2023, 235–244.
[7] Chattu V. K.: A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data and Cognitive Computing 5(3), 2021, 41. DOI: https://doi.org/10.3390/bdcc5030041
[8] Currie G. et al.: Machine learning and deep learning in medical imaging: Intelligent imaging. Journal of Medical Imaging and Radiation Sciences 50(4), 2019, 477–487. DOI: https://doi.org/10.1016/j.jmir.2019.09.005
[9] Dwivedi K. et al.: An explainable AI-driven biomarker discovery framework for non-small cell lung cancer classification. Computers in Biology and Medicine 153, 2023, 106544. DOI: https://doi.org/10.1016/j.compbiomed.2023.106544
[10] Grechkin B. V. et al.: VGG convolutional neural network classification of hyperspectral images of skin neoplasms. Journal of Biomedical Photonics & Engineering 9(4), 2023, 040304. DOI: https://doi.org/10.18287/JBPE23.09.040304
[11] Kobylińska K. et al.: Explainable machine learning for lung cancer screening models. Applied Sciences 12(4), 2022, 1926. DOI: https://doi.org/10.3390/app12041926
[12] Lakshmanaprabu S. K. et al.: Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems 92, 2019, 374–382. DOI: https://doi.org/10.1016/j.future.2018.10.009
[13] Leiter A., Veluswamy R. R., Wisnivesky J. P..: The global burden of lung cancer: Current status and future trends. Nature Reviews Clinical Oncology 20(9), 2023, 624–639. DOI: https://doi.org/10.1038/s41571-023-00798-3
[14] Li C. et al.: Advances in lung cancer screening and early detection. Cancer Biology & Medicine 19(5), 2022, 591. DOI: https://doi.org/10.20892/j.issn.2095-3941.2021.0690
[15] Liu Y. et al.: Radiologic features of small pulmonary nodules and lung cancer risk in the National Lung Screening Trial: A nested case-control study. Radiology 286(1), 2018, 298–306. DOI: https://doi.org/10.1148/radiol.2017161458
[16] Mummaneni S. et al.: A comprehensive study: Intracranial aneurysm detection via VGG16-DenseNet hybrid deep learning on DSA images. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(1), 2024, 105–110. DOI: https://doi.org/10.35784/iapgos.5804
[17] Pal M., Mistry S., De D.: Interpretability approaches of explainable AI in analyzing features for lung cancer detection. Frontiers of ICT in Healthcare: Proceedings of EAIT 2022, Springer Nature Singapore, 2023, 277–287. DOI: https://doi.org/10.1007/978-981-19-5191-6_23
[18] Rahman A. et al.: NeuroXAI++: An efficient X-AI intensive brain cancer detection and localization. International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM), IEEE, 2023, 1–6. DOI: https://doi.org/10.1109/NCIM59001.2023.10212818
[19] Rasool S. et al.: Harnessing predictive power: Exploring the crucial role of machine learning in early disease detection. JURIHUM: Jurnal Inovasi dan Humaniora 1(2), 2023, 302–315.
[20] Saman H. et al.: Non-invasive biomarkers for early lung cancer detection. Cancers 14(23), 2022, 5782. DOI: https://doi.org/10.3390/cancers14235782
[21] Shafi I. et al.: An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network. Cancers 14(21), 2022, 5457. DOI: https://doi.org/10.3390/cancers14215457
[22] Shamshirband S. et al.: A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. Journal of Biomedical Informatics 113, 2021, 103627. DOI: https://doi.org/10.1016/j.jbi.2020.103627
[23] Shakeel P. M., Burhanuddin M. A., Desa M. I.: Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier. Neural Computing and Applications 34(15), 2022, 1–14.
[24] Shimazaki A. et al.: Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific Reports 12(1), 2022, 727. DOI: https://doi.org/10.1038/s41598-021-04667-w
[25] Vliegenthart R. et al.: Innovations in thoracic imaging: CT, radiomics, AI, and x‐ray velocimetry. Respirology 27(10), 2022, 818–833. DOI: https://doi.org/10.1111/resp.14344
[26] Xu K. et al.: AI body composition in lung cancer screening: Added value beyond lung cancer detection. Radiology 308(1), 2023, e222937. DOI: https://doi.org/10.1148/radiol.222937
[27] Zhang C. et al.: Toward an expert level of lung cancer detection and classification using a deep convolutional neural network. The Oncologist 24(9), 2019, 1159–1165. DOI: https://doi.org/10.1634/theoncologist.2018-0908
[28] Zhang J. et al.: Cyber resilience in healthcare digital twin on lung cancer. IEEE Access 8, 2020, 201900–201913. DOI: https://doi.org/10.1109/ACCESS.2020.3034324
Article Details
Abstract views: 302

