[1] Abdulrahman R. O. et al.: Developing a Fine-Grained Corpus for a Less-Resourced Language: The Case of Kurdish. arXiv 11467, 2019.
[2] Ahmed R. M. et al.: Kurdish Handwritten Character Recognition Using Deep Learning Techniques 46, 2022, 119278.
DOI: https://doi.org/10.1016/j.gep.2022.119278
[3] Akhter M. P. et al.: Exploring Deep Learning Approaches for Urdu Text Classification in Product Manufacturing 16(2), 2022, 223–248.
DOI: https://doi.org/10.1080/17517575.2020.1755455
[4] Allahyari M. et al.: A Brief Survey of Text Mining: Classification, Clustering, and Extraction Techniques. arXiv 1707.02919v2, 2017.
[5] Alwehaibi A., Roy K.: Comparison of Pre-Trained Word Vectors for Arabic Text Classification Using Deep Learning Approach. 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018, 1471–1474.
DOI: https://doi.org/10.1109/ICMLA.2018.00239
[6] Celik S.: Collaborative English Language Learning in Primary School: A Sequential Explanatory Study in Kurdistan Region of Iraq. Id No. 2520, 2019.
[7] Chen K. et al.: Defect Texts Mining of Secondary Device in Smart Substation with GloVe and Attention-Based Bidirectional LSTM. Energies 13(17), 2020, 4522.
DOI: https://doi.org/10.3390/en13174522
[8] Choudhary P. et al.: A Four-Tier Annotated Urdu Handwritten Text Image Dataset for Multidisciplinary Research on Urdu Script. Information Processing. 15(4), 2016, 1–23.
DOI: https://doi.org/10.1145/2857053
[9] Gómez L. A. et al.: Single Shot Scene Text Retrieval. European Conference on Computer Vision (ECCV), 2018, 700–715.
DOI: https://doi.org/10.1007/978-3-030-01264-9_43
[10] Hakim L. et al.: Text Mining of UU-ITE Implementation in Indonesia. Journal of Physics: Conference Series 1, 2018.
DOI: https://doi.org/10.1088/1742-6596/1007/1/012038
[11] Hashimi A. O.: Ajami Tradition in Non-Islamic Society: The Roles of Ajami-Arabic Scripts in Keeping Records and Documentation. KIU Journal of Humanities 5(2), 2020, 373–379.
[12] Jana H. P.: The Tools of Language and Literature in Sustainable Development of the Globizen: An Enquiry with Special Reference to English Language and Literature. International Journal of Yogic, Human Movement and Sports Sciences 3(2), 2018, 318–324.
[13] Mallery G.: Sign Language among North American Indians Compared with That among Other Peoples and Deaf-Mutes. Vol. 14, Walter de Gruyter GmbH & Co KG, 2019.
[14] Rashid T. A. et al.: A Robust Categorization System for Kurdish Sorani Text Documents. Information Technology Journal 16(1), 2017, 27–34.
DOI: https://doi.org/10.3923/itj.2017.27.34
[15] Sheyholislami J.: Identity, Language, and New Media: The Kurdish Case. Language Policy 9, 2010, 289–312.
DOI: https://doi.org/10.1007/s10993-010-9179-y
[16] Sun W. et al.: Data Processing and Text Mining Technologies on Electronic Medical Records: A Review. Journal of Healthcare Engineering 2018, 4302425 [https://doi.org/10.1155/2018/4302425].
DOI: https://doi.org/10.1155/2018/4302425
[17] Tensmeyer C. et al.: Convolutional Neural Networks for Font Classification. 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 2017, 985–990.
DOI: https://doi.org/10.1109/ICDAR.2017.164
[18] Tofiq T. A., Hussein J. A.: Kurdish Text Segmentation Using Projection-Based Approaches. UHD Journal of Science and Technology 5(1), 2021, 56–65.
DOI: https://doi.org/10.21928/uhdjst.v5n1y2021.pp56-65
[19] Veisi H. et al.: Toward Kurdish Language Processing: Experiments in Collecting and Processing the Asosoft Text Corpus. Digital Scholarship in the Humanities 35(1), 2020, 176–193.
DOI: https://doi.org/10.1093/llc/fqy074
[20] Wahdan A. et al.: A Systematic Review of Text Classification Research Based on Deep Learning Models in Arabic Language. International Journal of Electrical and Computer Engineering (IJECE) 10(6), 2020, 6629–6643.
DOI: https://doi.org/10.11591/ijece.v10i6.pp6629-6643
[21] Wang Z. et al.: DeepFont: Identify Your Font from an Image. 23rd ACM International Conference on Multimedia, 2015.
DOI: https://doi.org/10.1145/2733373.2806219
[22] Wiedemann G., Wiedemann: Text Mining for Qualitative Data Analysis in the Social Sciences. Vol. 1, Springer, 2016.
DOI: https://doi.org/10.1007/978-3-658-15309-0_1
[23] Yao L. et al.: Graph Convolutional Networks for Text Classification. AAAI Conference on Artificial Intelligence 3(1), 2019, 7370–7377.
DOI: https://doi.org/10.1609/aaai.v33i01.33017370
[24] Yaseen R., Hassani H.: Kurdish Optical Character Recognition. UKH Journal of Science and Engineering 2(1), 2018, 18–27.
DOI: https://doi.org/10.25079/ukhjse.v2n1y2018.pp18-27
[25] Zarro R. D. et al.: Recognition-based online Kurdish character recognition using hidden Markov model and harmony search. I. J. Technology 20(2), 2017, 783–794.
DOI: https://doi.org/10.1016/j.jestch.2016.11.016