Properties of the lightweight aggregate modified with the spent zeolite sorbents after sorption of diesel fuel

Małgorzata Franus


Department of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology (Poland)
https://orcid.org/0000-0003-2317-4196

Lidia Bandura


Department of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology (Poland)
https://orcid.org/0000-0002-8284-9272

Abstract

The paper presents the possibility of modification of the lightweight aggregate with mineral sorbents after sorption of petroleum substances. The aggregate is obtained with the plastic method by burning at 1170°C. Evaluation of the physical and mechanical properties was based on the parameters such as specific gravity, bulk density and volumetric density, porosity, water absorption, frost resistance and resistance to crushing. The investigated properties indicate that the resulting lightweight aggregate with the addition of used sorbents meets the basic requirements for the lightweight aggregates used in construction.


Keywords:

clinoptilolite, Na-P1, petroleum substances, lightweight aggregate

Decleer J., Viaene W. Rupelian boom clay as raw material for expanded clay manufacturing. Applied Clay Science 8 (1993) 111-128.
  Google Scholar

Dermirdag S., Gunduz L. Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Construction and Building Materials 22 (2008) 2269-2275.
  Google Scholar

UNE-EN 13055-1. Kruszywa lekkie. Część 1: Kruszywa lekkie do betonu, zaprawy i rzadkiej zaprawy; 2003.
  Google Scholar

Bodycomb F.M., Stokowski S.J. Construction uses-insulation, Industrial minerals and rocks. London: SME 2000.
  Google Scholar

Fakhfakh E., Hajjaji W., Medhioub M., Rocha F., López-Galindo A., Setti M. Effect of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Appled Clay Sciences 35 (2007) 228-237.
  Google Scholar

Gonzáles-Corrochano B., Alonso–Azcárate J., Rodas M., Luque F.J., Barrenechea J.F. Microstructure and mineralogy of lightweight aggregate produced from washing aggregate sludge, fly ash, and used motor oil. Cement & Concrete Composites 32 (2010) 694–707.
DOI: https://doi.org/10.1016/j.cemconcomp.2010.07.014   Google Scholar

Kralj D. Experimental study of recycling lightweight concrete with aggregates containing expanded glass. Process Safety and Environmental Protection 87 (2009) 267–273.
DOI: https://doi.org/10.1016/j.psep.2009.03.003   Google Scholar

Wei Y.-L., Lin Ch.-Y., Ko K.-W., Wang H.P. Preparation of low water-sorption lightweight aggregates from harbor. Marine Pollution Bulletin 63 (2011) 135–140.
  Google Scholar

Sokolova S.N., Vereshagin V.I. Lightweight granular material from zeolite rocks with different additives. Construction and Building Materials 24 (2010) 625–629.
  Google Scholar

Kockal N.U., Ozturan T. Durability of lightweight concretes with lightweight fly ash aggregates. Construction and Building Materials 25 (2011) 1430–1438.
  Google Scholar

Chen H.J., Wang S.Y., Tang C.W. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Construction and Building Materials 24 (2010) 46-55.
  Google Scholar

Anderson M., Skerratt R.G. Variability study of incinerated sewage sludge ash in relation to future use in ceramic brick manufacture. British Ceramic Transactions 102 (3) (2003) 109–113.
DOI: https://doi.org/10.1179/096797803225001614   Google Scholar

Franus W., Franus M., Latosińska J., Wójcik R. The use of spent glauconite in lightweight aggregate production. Boletin De La Sociedad Espanola De Ceramica Y Vidrio 50/4 (2011) 193-200.
DOI: https://doi.org/10.3989/cyv.252011   Google Scholar

Król M., Mozgawa W., Pichór W. Immobilizacja kationów metali ciężkich w materiałach wypalanych na bazie smektytu i zeolitu naturalnego. Materiały Ceramiczne/Ceramic Materials 62 (2) (2010) 218-223.
  Google Scholar

Mozgawa W., Król M., Pichór W. Use of clinoptilolite for the immobilization of heavy metal ions and preparation of autoclaved building composites. Journal of Hazardous Materials 168 (2-3) (2009) 1482–1489.
DOI: https://doi.org/10.1016/j.jhazmat.2009.03.037   Google Scholar

Gonzáles-Corrochano B., Alonso–Azcárate J., Rodas M. Production of lightweight aggregates from mining and industrial wastes. Journal of Environmental Management 90 (2009) 2801-2812.
  Google Scholar

Libre N.A., Shekarchi M., Mahoutian M., Soroushian P. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials 25 (2011) 2458–2464.
  Google Scholar

Chałupnik S., Franus W., Wysocka M., Gzyl G. Application of zeolites for radium removal from mine water. Environmental Science and Pollution Research 20 (2013) 7900-7906.
  Google Scholar

UNE-EN 1097-3. Badania mechanicznych i fizycznych właściwości kruszyw. Part 3: Oznaczanie gęstości nasypowej i jamistości; 2000.
  Google Scholar

UNE-EN 1097-6. Badania mechanicznych i fizycznych właściwości kruszyw. Część 6: Oznaczanie gęstości ziaren i nasiąkliwości; 2000.
  Google Scholar

UNE-EN 1367-1. Badania właściwości cieplnych i odporności kruszyw na działanie czynników atmosferycznych. Part 1: Oznaczanie mrozoodporności.
  Google Scholar

Riley C.H, Relation of chemical properties to the bloating of clay. Journal of American Ceramic Society 34(4) (1950) 121-128.
DOI: https://doi.org/10.1111/j.1151-2916.1951.tb11619.x   Google Scholar

Franus W., Wdowin M., Removal of ammonium ions by selected natural and synthetic zeolites. Mineral Resources Management 26(4) (2010) 133-148.
  Google Scholar

Franus W. Characterization of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies 21(2) (2012) 337-343.
  Google Scholar

Wdowin M., Franus M., Panek R, Bandura L, Franus W; 2014: The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy - DOI 10.1007/s10098-014-0719-6.
DOI: https://doi.org/10.1007/s10098-014-0719-6   Google Scholar

Wdowin M., Franus W., Panek R. Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin 21/12 (2012) 3726 -3734.
  Google Scholar

Franus W, Dudek K. Clay minerals and clinoptilolite of Variegated Shales Formation of the Skole Unit. Polish Flysch Carpathians. Geologica Carpathica 50 (1999) 23-24.
  Google Scholar

Stagemann J.A., Cot’e P.L. A proposed protocol for evaluation of solidified wastes. Science of the Total Environment 178 (1996) 103-110.
  Google Scholar


Published
2014-06-11

Cited by

Franus, M. and Bandura, L. (2014) “Properties of the lightweight aggregate modified with the spent zeolite sorbents after sorption of diesel fuel”, Budownictwo i Architektura, 13(2), pp. 073–083. doi: 10.35784/bud-arch.1881.

Authors

Małgorzata Franus 

Department of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology Poland
https://orcid.org/0000-0003-2317-4196

Authors

Lidia Bandura 

Department of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology Poland
https://orcid.org/0000-0002-8284-9272

Statistics

Abstract views: 243
PDF downloads: 156


License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.