Properties of the lightweight aggregate modified with the spent zeolite sorbents after sorption of diesel fuel
Małgorzata Franus
Department of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology (Poland)
https://orcid.org/0000-0003-2317-4196
Lidia Bandura
Department of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology (Poland)
https://orcid.org/0000-0002-8284-9272
Abstract
The paper presents the possibility of modification of the lightweight aggregate with mineral sorbents after sorption of petroleum substances. The aggregate is obtained with the plastic method by burning at 1170°C. Evaluation of the physical and mechanical properties was based on the parameters such as specific gravity, bulk density and volumetric density, porosity, water absorption, frost resistance and resistance to crushing. The investigated properties indicate that the resulting lightweight aggregate with the addition of used sorbents meets the basic requirements for the lightweight aggregates used in construction.
Keywords:
clinoptilolite, Na-P1, petroleum substances, lightweight aggregateReferences
Decleer J., Viaene W. Rupelian boom clay as raw material for expanded clay manufacturing. Applied Clay Science 8 (1993) 111-128.
Google Scholar
Dermirdag S., Gunduz L. Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Construction and Building Materials 22 (2008) 2269-2275.
Google Scholar
UNE-EN 13055-1. Kruszywa lekkie. Część 1: Kruszywa lekkie do betonu, zaprawy i rzadkiej zaprawy; 2003.
Google Scholar
Bodycomb F.M., Stokowski S.J. Construction uses-insulation, Industrial minerals and rocks. London: SME 2000.
Google Scholar
Fakhfakh E., Hajjaji W., Medhioub M., Rocha F., López-Galindo A., Setti M. Effect of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Appled Clay Sciences 35 (2007) 228-237.
Google Scholar
Gonzáles-Corrochano B., Alonso–Azcárate J., Rodas M., Luque F.J., Barrenechea J.F. Microstructure and mineralogy of lightweight aggregate produced from washing aggregate sludge, fly ash, and used motor oil. Cement & Concrete Composites 32 (2010) 694–707.
DOI: https://doi.org/10.1016/j.cemconcomp.2010.07.014
Google Scholar
Kralj D. Experimental study of recycling lightweight concrete with aggregates containing expanded glass. Process Safety and Environmental Protection 87 (2009) 267–273.
DOI: https://doi.org/10.1016/j.psep.2009.03.003
Google Scholar
Wei Y.-L., Lin Ch.-Y., Ko K.-W., Wang H.P. Preparation of low water-sorption lightweight aggregates from harbor. Marine Pollution Bulletin 63 (2011) 135–140.
Google Scholar
Sokolova S.N., Vereshagin V.I. Lightweight granular material from zeolite rocks with different additives. Construction and Building Materials 24 (2010) 625–629.
Google Scholar
Kockal N.U., Ozturan T. Durability of lightweight concretes with lightweight fly ash aggregates. Construction and Building Materials 25 (2011) 1430–1438.
Google Scholar
Chen H.J., Wang S.Y., Tang C.W. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Construction and Building Materials 24 (2010) 46-55.
Google Scholar
Anderson M., Skerratt R.G. Variability study of incinerated sewage sludge ash in relation to future use in ceramic brick manufacture. British Ceramic Transactions 102 (3) (2003) 109–113.
DOI: https://doi.org/10.1179/096797803225001614
Google Scholar
Franus W., Franus M., Latosińska J., Wójcik R. The use of spent glauconite in lightweight aggregate production. Boletin De La Sociedad Espanola De Ceramica Y Vidrio 50/4 (2011) 193-200.
DOI: https://doi.org/10.3989/cyv.252011
Google Scholar
Król M., Mozgawa W., Pichór W. Immobilizacja kationów metali ciężkich w materiałach wypalanych na bazie smektytu i zeolitu naturalnego. Materiały Ceramiczne/Ceramic Materials 62 (2) (2010) 218-223.
Google Scholar
Mozgawa W., Król M., Pichór W. Use of clinoptilolite for the immobilization of heavy metal ions and preparation of autoclaved building composites. Journal of Hazardous Materials 168 (2-3) (2009) 1482–1489.
DOI: https://doi.org/10.1016/j.jhazmat.2009.03.037
Google Scholar
Gonzáles-Corrochano B., Alonso–Azcárate J., Rodas M. Production of lightweight aggregates from mining and industrial wastes. Journal of Environmental Management 90 (2009) 2801-2812.
Google Scholar
Libre N.A., Shekarchi M., Mahoutian M., Soroushian P. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Construction and Building Materials 25 (2011) 2458–2464.
Google Scholar
Chałupnik S., Franus W., Wysocka M., Gzyl G. Application of zeolites for radium removal from mine water. Environmental Science and Pollution Research 20 (2013) 7900-7906.
Google Scholar
UNE-EN 1097-3. Badania mechanicznych i fizycznych właściwości kruszyw. Part 3: Oznaczanie gęstości nasypowej i jamistości; 2000.
Google Scholar
UNE-EN 1097-6. Badania mechanicznych i fizycznych właściwości kruszyw. Część 6: Oznaczanie gęstości ziaren i nasiąkliwości; 2000.
Google Scholar
UNE-EN 1367-1. Badania właściwości cieplnych i odporności kruszyw na działanie czynników atmosferycznych. Part 1: Oznaczanie mrozoodporności.
Google Scholar
Riley C.H, Relation of chemical properties to the bloating of clay. Journal of American Ceramic Society 34(4) (1950) 121-128.
DOI: https://doi.org/10.1111/j.1151-2916.1951.tb11619.x
Google Scholar
Franus W., Wdowin M., Removal of ammonium ions by selected natural and synthetic zeolites. Mineral Resources Management 26(4) (2010) 133-148.
Google Scholar
Franus W. Characterization of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies 21(2) (2012) 337-343.
Google Scholar
Wdowin M., Franus M., Panek R, Bandura L, Franus W; 2014: The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy - DOI 10.1007/s10098-014-0719-6.
DOI: https://doi.org/10.1007/s10098-014-0719-6
Google Scholar
Wdowin M., Franus W., Panek R. Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin 21/12 (2012) 3726 -3734.
Google Scholar
Franus W, Dudek K. Clay minerals and clinoptilolite of Variegated Shales Formation of the Skole Unit. Polish Flysch Carpathians. Geologica Carpathica 50 (1999) 23-24.
Google Scholar
Stagemann J.A., Cot’e P.L. A proposed protocol for evaluation of solidified wastes. Science of the Total Environment 178 (1996) 103-110.
Google Scholar
Authors
Małgorzata FranusDepartment of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology Poland
https://orcid.org/0000-0003-2317-4196
Authors
Lidia BanduraDepartment of Geotechnics; Faculty of Civil Engineering and Architecture; Lublin University of Technology Poland
https://orcid.org/0000-0002-8284-9272
Statistics
Abstract views: 256PDF downloads: 166
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.