Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This research work aims to optimise the fabrication of n-based PERT monofacial solar cells of p⁺nn⁺ structure, using a simplified process and standard-sized n-type Czochralski (Si-Cz) monocrystalline silicon wafers. The aim is to achieve a conversion efficiency of 14.3%, comparable to the best performances reported for similar architectures. The study focused on the influence of the boron diffusion temperature on the emitter sheet resistance and the electrical performance of the cells. A diffusion temperature of 970°C was found to be optimal, offering a good compromise between low sheet resistance and uniform boron diffusion. Surface passivation by a layer of silicon oxide, deposited by dry thermal oxidation at 900°C in a controlled oxygen atmosphere, minimised surface recombination. The incorporation of an 80nm-thick silicon nitride (SiNx) anti-reflection coating (ARC), combined with pyramidal surface texturing, significantly reduced reflectance and optimised the absorption of incident light. The best-performing n-base PERT monofacial solar cell showed a short-circuit current density (Jsc) of 36.8 mA/cm², an open-circuit voltage (Voc) of 635 mV, a form factor (FF) of 0.79 and a conversion efficiency of 14.3%. These promising results confirm the potential of n-based PERT monofacial solar cells to achieve high performance using a simplified manufacturing process and standard wafer sizes, paving the way for low-cost production.
Keywords:
References
[1] Barbato M., et al.: Potential induced degradation of N- type bifacial silicon solar cells: An investigation based on electrical and optical measurements. Solar Energy Materials and Solar Cells 168, 2017, 51–61. DOI: https://doi.org/10.1016/j.solmat.2017.04.007
[2] Blakers A.: Development of the PERC Solar Cell. IEEE J. Photovoltaics 9(3), 2019, 629–635 [https://doi.org/10.1109/JPHOTOV.2019.2899460]. DOI: https://doi.org/10.1109/JPHOTOV.2019.2899460
[3] Bonilla R. S., et al.: Dielectric surface passivation for silicon solar cells: A review. Physica Status Solidi A: Applications and Materials Science 214, 2017, 1700293 [https://doi.org/10.1002/pssa.201700293]. DOI: https://doi.org/10.1002/pssa.201700293
[4] Chen C. C., et al.: High efficiency on boron emitter n-type Cz silicon bifacial cells with industrial process. Energy Procedia 38, 2013, 416–422 [https://doi.org/10.1016/j.egypro.2013.07.299]. DOI: https://doi.org/10.1016/j.egypro.2013.07.298
[5] Ding D., et al.: High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts. Solar Energy 193, 2019, 494–501 [https://doi.org/10.1016/j.solener.2019.09.066]. DOI: https://doi.org/10.1016/j.solener.2019.09.085
[6] El Amrani A., et al.: Design of solar cells p+/nemitter by spin-on technique. Acta Phys. Pol. A 132(3), 2017, 717–719 [https://doi.org/10.12693/APhysPolA.132.717]. DOI: https://doi.org/10.12693/APhysPolA.132.717
[7] El Amrani A., et al.: Co- Diffusion Processing of p+/n/n+ Structure for n-Type Silicon Solar Cells Using Boron Doped Paper Sheets. Silicon 14(1), 2022, 223–228 [https://doi.org/10.1007/s12633-020-00809-3]. DOI: https://doi.org/10.1007/s12633-020-00809-3
[8] Green M. A.: The Passivated Emitter and Rear Cell (PERC): From conception to mass production. Sol. Energy Mater. Sol. Cells 143, 2015, 190–197 [https://doi.org/10.1016/j.solmat.2015.06.055]. DOI: https://doi.org/10.1016/j.solmat.2015.06.055
[9] Kannan N., Vakeesan D.: Solar energy for future world: A review. Renew. Sustain. Energy Rev. 62, 2016, 1092–1105 [https://doi.org/10.1016/j.rser.2016.05.022]. DOI: https://doi.org/10.1016/j.rser.2016.05.022
[10] Labdelli B., et al.: Influence of Wafer Thickness and Screen-Printing Mesh Counts on the Al-BSF in Crystalline Silicon Solar Cells. J. Nano- Electron. Phys. 15(6), 2023, 1–5 [https://doi.org/10.21272/jnep.15(6).06027]. DOI: https://doi.org/10.21272/jnep.15(6).06027
[11] Naber R. C. G., et al.: ECN N-type silicon solar cell technology: An industrial process that yields 18.5%. Conf. Rec. IEEE Photovolt. Spec. Conf., 2009, 000990–000992 [https://doi.org/10.1109/PVSC.2009.5411189]. DOI: https://doi.org/10.1109/PVSC.2009.5411189
[12] Rodriguez J., et al.: Towards 22% efficient screen- printed bifacial n-type silicon solar cells. Sol. Energy Mater. Sol. Cells, 187, 2018, 91–96 [https://doi.org/10.1016/j.solmat.2018.07.020]. DOI: https://doi.org/10.1016/j.solmat.2018.07.020
[13] Sampaio P. G. V., González M. O. A.: Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 74, 2017, 590–601 [https://doi.org/10.1016/j.rser.2017.02.081]. DOI: https://doi.org/10.1016/j.rser.2017.02.081
[14] Timlelt A. B. E.: Investigation of p+ emitter formation for n-type silicon solar cells application. IOP Publ. Ltd, 2019 [https://doi.org/10.1088/2053-1591/ab582e]. DOI: https://doi.org/10.1088/2053-1591/ab582e
[15] Yin H. P., et al.: Bifacial n-type silicon solar cells with selective front surface field and rear emitter. Sol. Energy Mater. Sol. Cells 208, 2020, 110345 [https://doi.org/10.1016/j.solmat.2019.110345]. DOI: https://doi.org/10.1016/j.solmat.2019.110345
[16] Zanesco I., et al: Development of the most efficient solar cell in Brazil using an industrial process. Brazilian Journal of Solar Energy IX, 2018, 41–48 [https://doi.org/10.59627/rbens.2018v9i1.233]. DOI: https://doi.org/10.59627/rbens.2018v9i1.233
[17] Zhao J., Green M. A.: Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells. IEEE Transactions on Electron Devices 38(8), 1991, 1925–1934 [https://doi.org/10.1109/16.119035]. DOI: https://doi.org/10.1109/16.119035
Article Details
Abstract views: 211

