Integrating genomics & AI for precision crop monitoring and adaptive stress management
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
rajeshpolepogu@vrsiddhartha.ac.in
Abstract
Advancements in genomics and artificial intelligence are transforming precision agriculture by enabling early stress detection and adaptive crop management. Integrating genomic analysis, image-based stress detection, and real-time environmental monitoring, this approach assesses plant responses to stress factors such as drought and disease. A BERT-based model processes genomic data, while computer vision identifies visual stress indicators like wilting and discoloration. IoT sensors track environmental parameters such as soil moisture, temperature, and humidity, refining predictions and optimizing intervention strategies. The system leverages multimodal data fusion to enhance decision-making, improving the accuracy of stress detection and mitigation strategies. Machine learning models continuously adapt by learning from historical and real-time data, making recommendations more precise over time. A web-based platform allows users to upload plant images and environmental data for real-time analysis, generating personalized recommendations for irrigation, fertilization, and disease management. The platform's intuitive interface ensures accessibility for farmers and agricultural experts, facilitating widespread adoption. By combining AI, genomics, and IoT, this system enhances crop health, maximizes yield, and promotes sustainable farming through proactive, data-driven decision-making. Ultimately, it aims to reduce resource waste, mitigate crop losses, and support scalable, technology-driven agricultural solutions.
Keywords:
References
[1] Ansari A., Gangwar S., Raza K.: Data-Driven Genomics: A Triad of Big Data, Cloud, and IoT in Genomics Research. Deep Learning in Genetics and Genomics, Academic Press, 2025, 363–381 [https://doi.org/10.1016/B978-0-443-27574-6.00016-3]. DOI: https://doi.org/10.1016/B978-0-443-27574-6.00016-3
[2] Baulcombe D. C., Dean C.: Epigenetic Regulation in Plant Responses to the Environment. Cold Spring Harbor Perspectives in Biology 6(9), 2014, a019471 [https://doi.org/10.1101/cshperspect.a019471]. DOI: https://doi.org/10.1101/cshperspect.a019471
[3] Chandra R. M., Neelaiahgari G. V. S. T., Vanapalli S. S.: Extracting Emotion-Cause Pairs: A BiLSTM-Driven Methodology. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(4), 2024, 97–103 [https://doi.org/10.35784/iapgos.6679]. DOI: https://doi.org/10.35784/iapgos.6679
[4] Chandra R. M., Neelaiahgari G. S., Vanapalli S. S.: Enhancing Driver Safety Through Sensor-Based Detection and Mitigation of Health Risks in Vehicles. International Conference on Algorithms and Computational Theory for Engineering Applications. Springer, Cham 2024 [https://doi.org/10.1007/978-3-031-72747-4_30]. DOI: https://doi.org/10.1007/978-3-031-72747-4_30
[5] Chouhan S. S., Singh U. P., Jain S.: Applications of Computer Vision in Plant Pathology: A Survey. Archives of Computational Methods in Engineering 27(2), 2020, 611–632 [https://doi.org/10.1007/s11831-019-09324-0]. DOI: https://doi.org/10.1007/s11831-019-09324-0
[6] Cushman J. C., Bohnert H. J.: Genomic Approaches to Plant Stress Tolerance. Current Opinion in Plant Biology 3(2), 2000, 117–124 [https://doi.org/10.1016/S1369-5266(99)00052-7]. DOI: https://doi.org/10.1016/S1369-5266(99)00052-7
[7] Dang M., et al.: Computer Vision for Plant Disease Recognition: A Comprehensive Review. The Botanical Review 90(3), 2024, 251–311 [https://doi.org/10.1007/s12229-024-09299-z]. DOI: https://doi.org/10.1007/s12229-024-09299-z
[8] Grusak M. A.: Genomics-Assisted Plant Improvement to Benefit Human Nutrition and Health. Trends in Plant Science 4(5), 1999, 164–166 [https://doi.org/10.1016/s1360-1385(99)01400-4]. DOI: https://doi.org/10.1016/S1360-1385(99)01400-4
[9] Harakannanavar S. S., et al.: Plant Leaf Disease Detection Using Computer Vision and Machine Learning Algorithms. Global Transitions Proceedings, 3(1), 2022, 305–310 [https://doi.org/10.1016/j.gltp.2022.03.016]. DOI: https://doi.org/10.1016/j.gltp.2022.03.016
[10] Imelfort M., Edwards D.: De Novo Sequencing of Plant Genomes Using Second-Generation Technologies. Briefings in Bioinformatics 10(6), 2009, 609–618 [https://doi.org/10.1093/bib/bbp039]. DOI: https://doi.org/10.1093/bib/bbp039
[11] Iqbal B., et al.: Unlocking Plant Resilience: Advanced Epigenetic Strategies Against Heavy Metal and Metalloid Stress. Plant Science, 2024, 112265 [https://doi.org/10.1186/s13062-016-0113-x]. DOI: https://doi.org/10.1016/j.plantsci.2024.112265
[12] Islam T.: Genomic Surveillance for Tackling Emerging Plant Diseases, with Special Reference to Wheat Blast. CABI Reviews 19(1), 2024 [https://doi.org/10.1079/cabireviews.2024.0050]. DOI: https://doi.org/10.1079/cabireviews.2024.0050
[13] Jiang S., et al.: Fine-Tuning BERT-Based Models for Plant Health Bulletin Classification. arXiv, preprint, arXiv:2102.00838, 2021 [https://doi.org/10.48550/arXiv.2102.00838].
[14] Kumar M., et al.: Genomics‐Driven Strategies for Sustainable Crop Improvement in Agriculture. Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 2025, 321–343 [https://doi.org/10.1002/9781394268832.ch15]. DOI: https://doi.org/10.1002/9781394268832.ch15
[15] Madhuri C. R., et al.: Smart Irrigation Optimization with IoT and Weather Forecasts for Sustainable Crop Management. 1st International Conference on Advances in Computing, Communication and Networking - ICAC2N, IEEE, 2024 [https://doi.org/10.1109/ICAC2N63387.2024.10895564]. DOI: https://doi.org/10.1109/ICAC2N63387.2024.10895564
[16] Mochida K., et al.: Computer Vision-Based Phenotyping for Improvement of Plant Productivity: A Machine Learning Perspective. GigaScience 8(1), 2019, giy153 [https://doi.org/10.1093/gigascience/giy153]. DOI: https://doi.org/10.1093/gigascience/giy153
[17] Nayak A., et al.: Leveraging BERT-Enhanced MLP Classifier for Automated Stress Detection in Social Media Articles. International Conference on Advances in Computing Research on Science Engineering and Technology – ACROSET, IEEE, 2024 [https://doi.org/10.1109/ACROSET62108.2024.10743857]. DOI: https://doi.org/10.1109/ACROSET62108.2024.10743857
[18] Perez-de-Castro A., et al.: Application of Genomic Tools in Plant Breeding. Current Genomics 13(3), 2012, 179–195 [https://doi.org/10.2174/138920212800543084]. DOI: https://doi.org/10.2174/138920212800543084
[19] Pimentel H. C. B., de Lima A. P. M., Latawiec A. E.: Recommendations for Implementing Therapeutic Gardens to Enhance Human Well-Being. Sustainability 16(21), 2024, 9502 [https://doi.org/10.3390/su16219502]. DOI: https://doi.org/10.3390/su16219502
[20] Riyanto S., et al.: Plant-Disease Relation Model Through BERT-BiLSTM-CRF Approach. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 12(1), 2024, 113–124 [https://doi.org/10.52549/ijeei.v12i1.5154]. DOI: https://doi.org/10.52549/ijeei.v12i1.5154
[21] Robène I., et al.: Development and Comparative Validation of Genomic-Driven PCR-Based Assays to Detect Xanthomonas citri pv. citri in Citrus Plants. BMC Microbiology 20, 2020, 1–13 [https://doi.org/10.1186/s12866-020-01972-8]. DOI: https://doi.org/10.1186/s12866-020-01972-8
[22] Schaffer R., et al.: Monitoring Genome-Wide Expression in Plants. Current Opinion in Biotechnology 11(2), 2000, 162–167 [https://doi.org/10.1016/S0958-1669(00)00084-7]. DOI: https://doi.org/10.1016/S0958-1669(00)00084-7
[23] Vanapalli S. S., et al.: BiLSTM-Powered Emotion Recognition from ECG and GSR Signals. International Journal of Mathematical Sciences and Computing (IJMSC), 11(2, 2025, 38–51 [https://doi.org/10.5815/ijmsc.2025.02.04]. DOI: https://doi.org/10.5815/ijmsc.2025.02.04
[24] Wäldchen, Jana, and Patrick Mäder.: Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Archives of Computational Methods in Engineering 25, 2018, 507–543 [https://doi.org/10.1007/s11831-016-9206-z]. DOI: https://doi.org/10.1007/s11831-016-9206-z
[25] Wicker T., et al.: Low-Pass Shotgun Sequencing of the Barley Genome Facilitates Rapid Identification of Genes, Conserved Non-Coding Sequences and Novel Repeats. BMC Genomics 9, 2008, 518 [https://doi.org/10.1186/1471-2164-9-518]. DOI: https://doi.org/10.1186/1471-2164-9-518
Article Details
Abstract views: 453

