[1] Ansari A., Gangwar S., Raza K.: Data-Driven Genomics: A Triad of Big Data, Cloud, and IoT in Genomics Research. Deep Learning in Genetics and Genomics, Academic Press, 2025, 363–381 [https://doi.org/10.1016/B978-0-443-27574-6.00016-3].
DOI: https://doi.org/10.1016/B978-0-443-27574-6.00016-3
[2] Baulcombe D. C., Dean C.: Epigenetic Regulation in Plant Responses to the Environment. Cold Spring Harbor Perspectives in Biology 6(9), 2014, a019471 [https://doi.org/10.1101/cshperspect.a019471].
DOI: https://doi.org/10.1101/cshperspect.a019471
[3] Chandra R. M., Neelaiahgari G. V. S. T., Vanapalli S. S.: Extracting Emotion-Cause Pairs: A BiLSTM-Driven Methodology. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(4), 2024, 97–103 [https://doi.org/10.35784/iapgos.6679].
DOI: https://doi.org/10.35784/iapgos.6679
[4] Chandra R. M., Neelaiahgari G. S., Vanapalli S. S.: Enhancing Driver Safety Through Sensor-Based Detection and Mitigation of Health Risks in Vehicles. International Conference on Algorithms and Computational Theory for Engineering Applications. Springer, Cham 2024 [https://doi.org/10.1007/978-3-031-72747-4_30].
DOI: https://doi.org/10.1007/978-3-031-72747-4_30
[5] Chouhan S. S., Singh U. P., Jain S.: Applications of Computer Vision in Plant Pathology: A Survey. Archives of Computational Methods in Engineering 27(2), 2020, 611–632 [https://doi.org/10.1007/s11831-019-09324-0].
DOI: https://doi.org/10.1007/s11831-019-09324-0
[6] Cushman J. C., Bohnert H. J.: Genomic Approaches to Plant Stress Tolerance. Current Opinion in Plant Biology 3(2), 2000, 117–124 [https://doi.org/10.1016/S1369-5266(99)00052-7].
DOI: https://doi.org/10.1016/S1369-5266(99)00052-7
[7] Dang M., et al.: Computer Vision for Plant Disease Recognition: A Comprehensive Review. The Botanical Review 90(3), 2024, 251–311 [https://doi.org/10.1007/s12229-024-09299-z].
DOI: https://doi.org/10.1007/s12229-024-09299-z
[8] Grusak M. A.: Genomics-Assisted Plant Improvement to Benefit Human Nutrition and Health. Trends in Plant Science 4(5), 1999, 164–166 [https://doi.org/10.1016/s1360-1385(99)01400-4].
DOI: https://doi.org/10.1016/S1360-1385(99)01400-4
[9] Harakannanavar S. S., et al.: Plant Leaf Disease Detection Using Computer Vision and Machine Learning Algorithms. Global Transitions Proceedings, 3(1), 2022, 305–310 [https://doi.org/10.1016/j.gltp.2022.03.016].
DOI: https://doi.org/10.1016/j.gltp.2022.03.016
[10] Imelfort M., Edwards D.: De Novo Sequencing of Plant Genomes Using Second-Generation Technologies. Briefings in Bioinformatics 10(6), 2009, 609–618 [https://doi.org/10.1093/bib/bbp039].
DOI: https://doi.org/10.1093/bib/bbp039
[11] Iqbal B., et al.: Unlocking Plant Resilience: Advanced Epigenetic Strategies Against Heavy Metal and Metalloid Stress. Plant Science, 2024, 112265 [https://doi.org/10.1186/s13062-016-0113-x].
DOI: https://doi.org/10.1016/j.plantsci.2024.112265
[12] Islam T.: Genomic Surveillance for Tackling Emerging Plant Diseases, with Special Reference to Wheat Blast. CABI Reviews 19(1), 2024 [https://doi.org/10.1079/cabireviews.2024.0050].
DOI: https://doi.org/10.1079/cabireviews.2024.0050
[13] Jiang S., et al.: Fine-Tuning BERT-Based Models for Plant Health Bulletin Classification. arXiv, preprint, arXiv:2102.00838, 2021 [https://doi.org/10.48550/arXiv.2102.00838].
[14] Kumar M., et al.: Genomics‐Driven Strategies for Sustainable Crop Improvement in Agriculture. Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 2025, 321–343 [https://doi.org/10.1002/9781394268832.ch15].
DOI: https://doi.org/10.1002/9781394268832.ch15
[15] Madhuri C. R., et al.: Smart Irrigation Optimization with IoT and Weather Forecasts for Sustainable Crop Management. 1st International Conference on Advances in Computing, Communication and Networking - ICAC2N, IEEE, 2024 [https://doi.org/10.1109/ICAC2N63387.2024.10895564].
DOI: https://doi.org/10.1109/ICAC2N63387.2024.10895564
[16] Mochida K., et al.: Computer Vision-Based Phenotyping for Improvement of Plant Productivity: A Machine Learning Perspective. GigaScience 8(1), 2019, giy153 [https://doi.org/10.1093/gigascience/giy153].
DOI: https://doi.org/10.1093/gigascience/giy153
[17] Nayak A., et al.: Leveraging BERT-Enhanced MLP Classifier for Automated Stress Detection in Social Media Articles. International Conference on Advances in Computing Research on Science Engineering and Technology – ACROSET, IEEE, 2024 [https://doi.org/10.1109/ACROSET62108.2024.10743857].
DOI: https://doi.org/10.1109/ACROSET62108.2024.10743857
[18] Perez-de-Castro A., et al.: Application of Genomic Tools in Plant Breeding. Current Genomics 13(3), 2012, 179–195 [https://doi.org/10.2174/138920212800543084].
DOI: https://doi.org/10.2174/138920212800543084
[19] Pimentel H. C. B., de Lima A. P. M., Latawiec A. E.: Recommendations for Implementing Therapeutic Gardens to Enhance Human Well-Being. Sustainability 16(21), 2024, 9502 [https://doi.org/10.3390/su16219502].
DOI: https://doi.org/10.3390/su16219502
[20] Riyanto S., et al.: Plant-Disease Relation Model Through BERT-BiLSTM-CRF Approach. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 12(1), 2024, 113–124 [https://doi.org/10.52549/ijeei.v12i1.5154].
DOI: https://doi.org/10.52549/ijeei.v12i1.5154
[21] Robène I., et al.: Development and Comparative Validation of Genomic-Driven PCR-Based Assays to Detect Xanthomonas citri pv. citri in Citrus Plants. BMC Microbiology 20, 2020, 1–13 [https://doi.org/10.1186/s12866-020-01972-8].
DOI: https://doi.org/10.1186/s12866-020-01972-8
[22] Schaffer R., et al.: Monitoring Genome-Wide Expression in Plants. Current Opinion in Biotechnology 11(2), 2000, 162–167 [https://doi.org/10.1016/S0958-1669(00)00084-7].
DOI: https://doi.org/10.1016/S0958-1669(00)00084-7
[23] Vanapalli S. S., et al.: BiLSTM-Powered Emotion Recognition from ECG and GSR Signals. International Journal of Mathematical Sciences and Computing (IJMSC), 11(2, 2025, 38–51 [https://doi.org/10.5815/ijmsc.2025.02.04].
DOI: https://doi.org/10.5815/ijmsc.2025.02.04
[24] Wäldchen, Jana, and Patrick Mäder.: Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Archives of Computational Methods in Engineering 25, 2018, 507–543 [https://doi.org/10.1007/s11831-016-9206-z].
DOI: https://doi.org/10.1007/s11831-016-9206-z
[25] Wicker T., et al.: Low-Pass Shotgun Sequencing of the Barley Genome Facilitates Rapid Identification of Genes, Conserved Non-Coding Sequences and Novel Repeats. BMC Genomics 9, 2008, 518 [https://doi.org/10.1186/1471-2164-9-518].
DOI: https://doi.org/10.1186/1471-2164-9-518