References
[1] Cao Q. et al.: Vggface2: A dataset for recognising faces across pose and age. 13th IEEE international conference on automatic face & gesture recognition, 2018, 67–74.
DOI: https://doi.org/10.1109/FG.2018.00020
[2] He K. et al.: Deep residual learning for image recognition. IEEE conference on computer vision and pattern recognition, 2016, 770–778 [https://doi.org/10.48550/arXiv.1512.03385].
DOI: https://doi.org/10.1109/CVPR.2016.90
[3] Hossin M., Sulaiman M. N.: A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process 5(2), 2015, 1 [http://dx.doi.org/10.5121/ijdkp.2015.5201].
DOI: https://doi.org/10.5121/ijdkp.2015.5201
[4] Jayaraman U. et al.: Recent development in face recognition. Neurocomputing, 408, 231–245.
DOI: https://doi.org/10.1016/j.neucom.2019.08.110
[5] Kamyab T. et al.: Combination of Genetic Algorithm and Neural Network to Select Facial Features in Face Recognition Technique. International Journal of Robotics and Control Systems 3(1), 2023, 50–58.
DOI: https://doi.org/10.31763/ijrcs.v3i1.849
[6] Karczmarek P. et al.: Quadrature-inspired generalized Choquet integral. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–7, 2022.
DOI: https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882684
[7] Nandre J., Rai S., Kanawade B. R.: Comparative Analysis of Transfer Learning CNN for Face Recognition. 2nd International Conference on Intelligent Technologies (CONIT), 1–6, 2022 [https://doi.org/10.1109/CONIT55038.2022.9847946].
DOI: https://doi.org/10.1109/CONIT55038.2022.9847946
[8] Paul K. C., Aslan S.: An improved real-time face recognition system at low resolution based on local binary pattern histogram algorithm and CLAHE. 2021, arXiv preprint arXiv:2104.07234 [https://doi.org/10.48550/arXiv.2104.07234].
DOI: https://doi.org/10.4236/opj.2021.114005
[9] Phillips P. J. et al.: Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences 115(24), 2018, 6171–6176.
DOI: https://doi.org/10.1073/pnas.1721355115
[10] Powroźnik P., Wojcicki P., Przylucki S. W.: Scalogram as a representation of emotional speech. IEEE Access 9, 2021, 154044–154057 [https://doi.org/10.1109/ACCESS.2021.3127581].
DOI: https://doi.org/10.1109/ACCESS.2021.3127581
[11] Schroff F., Kalenichenko D., Philbin J.: Facenet: A unified embedding for face recognition and clustering. IEEE conference on computer vision and pattern recognition, 2015, 815–823.
DOI: https://doi.org/10.1109/CVPR.2015.7298682
[12] Selvaraju R. R. et al.: Grad-CAM: Why did you say that?, arXiv preprint arXiv:1611.07450, 2016 [https://doi.org/10.48550/arXiv.1611.07450].
[13] Simonyan K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 [https://doi.org/10.48550/arXiv.1409.1556].
[14] Song C., Ji S.: Face recognition method based on siamese networks under non-restricted conditions. IEEE Access 10, 2022, 40432–40444.
DOI: https://doi.org/10.1109/ACCESS.2022.3167143
[15] Tan M., Le Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. International conference on machine learning, 2019, 6105–6114 [https://doi.org/10.48550/arXiv.1905.11946].
[16] Tharwat A.: Classification assessment methods. Applied computing and informatics 17(1), 2021, 168–192 [https://doi.org/10.1016/j.aci.2018.08.003].
DOI: https://doi.org/10.1016/j.aci.2018.08.003
[17] Wang X. et al.: A survey of face recognition. arXiv preprint arXiv:2212.13038, 2022.
[18] Wu H. et al.: Face recognition based on Haar like and Euclidean distance. Journal of Physics: Conference Series, 1813, 1, 012036.
DOI: https://doi.org/10.1088/1742-6596/1813/1/012036
[19] Zarei S., Andi T.: Face recognition methods analysis. International Journal Artificial Intelligent and Informatics 1(1), 2018, 1–12.
DOI: https://doi.org/10.33292/ijarlit.v1i1.13