Analysis of selected methods of person identification based on biometric data
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The article explores the challenge of identifying individuals using biometric data through advanced deep learning methods. The research employs three ground-breaking convolutional neural network architectures: ResNet50, EfficientNetB0, and VGG16. The project's objective was to examine the influence of critical factors, such as image quality and data processing techniques, on the performance of face identification systems. A series of experiments were carried out based on predefined test scenarios, allowing for the verification of hypotheses regarding the effects of input image resolution and data transformations on model accuracy. The experimental results highlight the substantial impact of both the chosen architecture and processing parameters on the system's identification accuracy. The article presents valuable conclusions that can inform the further development of biometric systems. Notably, the EfficientNetB0 model achieved the best performance across various metrics, including the confusion matrix and activation heatmaps, demonstrating its superior capability in identifying biometric data from facial images.
Keywords:
References
References
[1] Cao Q. et al.: Vggface2: A dataset for recognising faces across pose and age. 13th IEEE international conference on automatic face & gesture recognition, 2018, 67–74. DOI: https://doi.org/10.1109/FG.2018.00020
[2] He K. et al.: Deep residual learning for image recognition. IEEE conference on computer vision and pattern recognition, 2016, 770–778 [https://doi.org/10.48550/arXiv.1512.03385]. DOI: https://doi.org/10.1109/CVPR.2016.90
[3] Hossin M., Sulaiman M. N.: A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process 5(2), 2015, 1 [http://dx.doi.org/10.5121/ijdkp.2015.5201]. DOI: https://doi.org/10.5121/ijdkp.2015.5201
[4] Jayaraman U. et al.: Recent development in face recognition. Neurocomputing, 408, 231–245. DOI: https://doi.org/10.1016/j.neucom.2019.08.110
[5] Kamyab T. et al.: Combination of Genetic Algorithm and Neural Network to Select Facial Features in Face Recognition Technique. International Journal of Robotics and Control Systems 3(1), 2023, 50–58. DOI: https://doi.org/10.31763/ijrcs.v3i1.849
[6] Karczmarek P. et al.: Quadrature-inspired generalized Choquet integral. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–7, 2022. DOI: https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882684
[7] Nandre J., Rai S., Kanawade B. R.: Comparative Analysis of Transfer Learning CNN for Face Recognition. 2nd International Conference on Intelligent Technologies (CONIT), 1–6, 2022 [https://doi.org/10.1109/CONIT55038.2022.9847946]. DOI: https://doi.org/10.1109/CONIT55038.2022.9847946
[8] Paul K. C., Aslan S.: An improved real-time face recognition system at low resolution based on local binary pattern histogram algorithm and CLAHE. 2021, arXiv preprint arXiv:2104.07234 [https://doi.org/10.48550/arXiv.2104.07234]. DOI: https://doi.org/10.4236/opj.2021.114005
[9] Phillips P. J. et al.: Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences 115(24), 2018, 6171–6176. DOI: https://doi.org/10.1073/pnas.1721355115
[10] Powroźnik P., Wojcicki P., Przylucki S. W.: Scalogram as a representation of emotional speech. IEEE Access 9, 2021, 154044–154057 [https://doi.org/10.1109/ACCESS.2021.3127581]. DOI: https://doi.org/10.1109/ACCESS.2021.3127581
[11] Schroff F., Kalenichenko D., Philbin J.: Facenet: A unified embedding for face recognition and clustering. IEEE conference on computer vision and pattern recognition, 2015, 815–823. DOI: https://doi.org/10.1109/CVPR.2015.7298682
[12] Selvaraju R. R. et al.: Grad-CAM: Why did you say that?, arXiv preprint arXiv:1611.07450, 2016 [https://doi.org/10.48550/arXiv.1611.07450].
[13] Simonyan K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 [https://doi.org/10.48550/arXiv.1409.1556].
[14] Song C., Ji S.: Face recognition method based on siamese networks under non-restricted conditions. IEEE Access 10, 2022, 40432–40444. DOI: https://doi.org/10.1109/ACCESS.2022.3167143
[15] Tan M., Le Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. International conference on machine learning, 2019, 6105–6114 [https://doi.org/10.48550/arXiv.1905.11946].
[16] Tharwat A.: Classification assessment methods. Applied computing and informatics 17(1), 2021, 168–192 [https://doi.org/10.1016/j.aci.2018.08.003]. DOI: https://doi.org/10.1016/j.aci.2018.08.003
[17] Wang X. et al.: A survey of face recognition. arXiv preprint arXiv:2212.13038, 2022.
[18] Wu H. et al.: Face recognition based on Haar like and Euclidean distance. Journal of Physics: Conference Series, 1813, 1, 012036. DOI: https://doi.org/10.1088/1742-6596/1813/1/012036
[19] Zarei S., Andi T.: Face recognition methods analysis. International Journal Artificial Intelligent and Informatics 1(1), 2018, 1–12. DOI: https://doi.org/10.33292/ijarlit.v1i1.13
Article Details
Abstract views: 168

