[1] Akinola O. O., et al.: Multiclass feature selection with metaheuristic optimization algorithms: a review. Neural Comput & Applic 34, 2022, 19751–19790 [https://doi.org/10.1007/s00521-022-07705-4].
DOI: https://doi.org/10.1007/s00521-022-07705-4
[2] Al-Kababchee S. G. M., Algamal Z. Y., Qasim O. S.: Enhancement of K-means clustering in big data based on equilibrium optimizer algorithm. Journal of Intelligent Systems 32(1), 2023, 20220230.
DOI: https://doi.org/10.1515/jisys-2022-0230
[3] Al-Kababchee S. G. M., Qasim O. S., Algamal Z. Y.: Improving penalized regression-based clustering model in big data. Journal of Physics: Conference Series 1897, 2021, 012036.
DOI: https://doi.org/10.1088/1742-6596/1897/1/012036
[4] Beheshti Z.: UTF: Upgrade transfer function for binary meta-heuristic algorithms. Applied Soft Computing 106, 2021, 107346.
DOI: https://doi.org/10.1016/j.asoc.2021.107346
[5] Brownlee J.: Machine learning mastery. 2022.
[6] Cacchiani V., et al.: Knapsack problems - An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Computers and Operations Research 143, 2022, 105693.
DOI: https://doi.org/10.1016/j.cor.2021.105693
[7] Emary E., Zawbaa H. M., Hassanien A. E. J. N.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 2016, 371–381.
DOI: https://doi.org/10.1016/j.neucom.2015.06.083
[8] Ghosh K. K., et al.: Binary social mimic optimization algorithm with x-shaped transfer function for feature selection. IEEE Access 8, 2020, 97890–97906.
DOI: https://doi.org/10.1109/ACCESS.2020.2996611
[9] Inyanga F. E., Muisyo I. N., Kaberere K. K.: Optimization of dynamic transmission network expansion planning using binary particle swarm optimization algorithm. Bulletin of Electrical Engineering and Informatics 14(2), 2025, 861–873.
DOI: https://doi.org/10.11591/eei.v14i2.8944
[10] Ismael O. M., Qasim O. S., Algamal Z. Y.: A new adaptive algorithm for v-support vector regression with feature selection using Harris hawks optimization algorithm. Journal of Physics: Conference Series 1897, 2021, 012057.
DOI: https://doi.org/10.1088/1742-6596/1897/1/012057
[11] Kaggle, 2024 [https://www.kaggle.com/].
[12] Liu J., et al.: A binary differential search algorithm for the 0–1 multidimensional knapsack problem. Applied Mathematical Modelling 40(23-24), 2016, 9788–9805.
DOI: https://doi.org/10.1016/j.apm.2016.06.002
[13] Mafarja M., et al.: Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems 161, 2018, 185–204.
DOI: https://doi.org/10.1016/j.knosys.2018.08.003
[14] Mafarja M., et al.: S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. Proceedings of the international conference on future networks and distributed systems. Association for Computing Machinery, New York, NY, USA, 2017, Article 21, 1–7 [https://doi.org/10.1145/3102304.3102325].
DOI: https://doi.org/10.1145/3102304.3102325
[15] Mirjalili S., Lewis A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evolutionary Computation 9, 2013, 1–14.
DOI: https://doi.org/10.1016/j.swevo.2012.09.002
[16] Pudjihartono N., et al.: A review of feature selection methods for machine learning-based disease risk prediction. Frontiers in Bioinformatics 2, 2022, 927312 [https://doi.org/10.3389/fbinf.2022.927312].
DOI: https://doi.org/10.3389/fbinf.2022.927312
[17] Rouhi A., Nezamabadi-Pour H. J. O.: Feature selection in high-dimensional data. Hadi Amini M. (ed.): Optimization, Learning, and Control for Interdependent Complex Networks. Springer, 2020, 85–128.
DOI: https://doi.org/10.1007/978-3-030-34094-0_5
[18] Sadeghian Z., et al.: A review of feature selection methods based on meta-heuristic algorithms. Journal of Experimental and Theoretical Artificial Intelligence 37(1), 2025, 1–51.
DOI: https://doi.org/10.1080/0952813X.2023.2183267
[19] Venkatesh B., Anuradha J.: A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 19(1), 2019, 3–26 [https://doi.org/10.2478/cait-2019-0001].
DOI: https://doi.org/10.2478/cait-2019-0001
[20] Yuan C., et al.: Polar lights optimizer: Algorithm and applications in image segmentation and feature selection. Neurocomputing 607, 2024, 128427.
DOI: https://doi.org/10.1016/j.neucom.2024.128427