Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
zakariya.algamal@uomosul.edu.iq
Abstract
This research aims to develop a new transfer function to transform continuous space to binary space using the Polar Lights Optimizer (PLO) algorithm for the feature selection problem. The PLO algorithm relies on simulating the behaviour of the aurora borealis to achieve a balance in exploring and exploiting binary space. A new transfer function called the tent-shaped transfer function has been incorporated into the algorithm to improve its performance. The proposed function was tested on seven datasets, and compared with traditional transfer functions such as the S-shaped function family and the V-shaped function family. The results showed that the tent-shaped transfer function outperforms in terms of feature selection accuracy and reduces the number of features more effectively, which enhances the algorithm's ability to improve performance and reduce computational complexity.
Keywords:
References
[1] Akinola O. O., et al.: Multiclass feature selection with metaheuristic optimization algorithms: a review. Neural Comput & Applic 34, 2022, 19751–19790 [https://doi.org/10.1007/s00521-022-07705-4]. DOI: https://doi.org/10.1007/s00521-022-07705-4
[2] Al-Kababchee S. G. M., Algamal Z. Y., Qasim O. S.: Enhancement of K-means clustering in big data based on equilibrium optimizer algorithm. Journal of Intelligent Systems 32(1), 2023, 20220230. DOI: https://doi.org/10.1515/jisys-2022-0230
[3] Al-Kababchee S. G. M., Qasim O. S., Algamal Z. Y.: Improving penalized regression-based clustering model in big data. Journal of Physics: Conference Series 1897, 2021, 012036. DOI: https://doi.org/10.1088/1742-6596/1897/1/012036
[4] Beheshti Z.: UTF: Upgrade transfer function for binary meta-heuristic algorithms. Applied Soft Computing 106, 2021, 107346. DOI: https://doi.org/10.1016/j.asoc.2021.107346
[5] Brownlee J.: Machine learning mastery. 2022.
[6] Cacchiani V., et al.: Knapsack problems - An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Computers and Operations Research 143, 2022, 105693. DOI: https://doi.org/10.1016/j.cor.2021.105693
[7] Emary E., Zawbaa H. M., Hassanien A. E. J. N.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 2016, 371–381. DOI: https://doi.org/10.1016/j.neucom.2015.06.083
[8] Ghosh K. K., et al.: Binary social mimic optimization algorithm with x-shaped transfer function for feature selection. IEEE Access 8, 2020, 97890–97906. DOI: https://doi.org/10.1109/ACCESS.2020.2996611
[9] Inyanga F. E., Muisyo I. N., Kaberere K. K.: Optimization of dynamic transmission network expansion planning using binary particle swarm optimization algorithm. Bulletin of Electrical Engineering and Informatics 14(2), 2025, 861–873. DOI: https://doi.org/10.11591/eei.v14i2.8944
[10] Ismael O. M., Qasim O. S., Algamal Z. Y.: A new adaptive algorithm for v-support vector regression with feature selection using Harris hawks optimization algorithm. Journal of Physics: Conference Series 1897, 2021, 012057. DOI: https://doi.org/10.1088/1742-6596/1897/1/012057
[11] Kaggle, 2024 [https://www.kaggle.com/].
[12] Liu J., et al.: A binary differential search algorithm for the 0–1 multidimensional knapsack problem. Applied Mathematical Modelling 40(23-24), 2016, 9788–9805. DOI: https://doi.org/10.1016/j.apm.2016.06.002
[13] Mafarja M., et al.: Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems 161, 2018, 185–204. DOI: https://doi.org/10.1016/j.knosys.2018.08.003
[14] Mafarja M., et al.: S-shaped vs. V-shaped transfer functions for ant lion optimization algorithm in feature selection problem. Proceedings of the international conference on future networks and distributed systems. Association for Computing Machinery, New York, NY, USA, 2017, Article 21, 1–7 [https://doi.org/10.1145/3102304.3102325]. DOI: https://doi.org/10.1145/3102304.3102325
[15] Mirjalili S., Lewis A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evolutionary Computation 9, 2013, 1–14. DOI: https://doi.org/10.1016/j.swevo.2012.09.002
[16] Pudjihartono N., et al.: A review of feature selection methods for machine learning-based disease risk prediction. Frontiers in Bioinformatics 2, 2022, 927312 [https://doi.org/10.3389/fbinf.2022.927312]. DOI: https://doi.org/10.3389/fbinf.2022.927312
[17] Rouhi A., Nezamabadi-Pour H. J. O.: Feature selection in high-dimensional data. Hadi Amini M. (ed.): Optimization, Learning, and Control for Interdependent Complex Networks. Springer, 2020, 85–128. DOI: https://doi.org/10.1007/978-3-030-34094-0_5
[18] Sadeghian Z., et al.: A review of feature selection methods based on meta-heuristic algorithms. Journal of Experimental and Theoretical Artificial Intelligence 37(1), 2025, 1–51. DOI: https://doi.org/10.1080/0952813X.2023.2183267
[19] Venkatesh B., Anuradha J.: A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 19(1), 2019, 3–26 [https://doi.org/10.2478/cait-2019-0001]. DOI: https://doi.org/10.2478/cait-2019-0001
[20] Yuan C., et al.: Polar lights optimizer: Algorithm and applications in image segmentation and feature selection. Neurocomputing 607, 2024, 128427. DOI: https://doi.org/10.1016/j.neucom.2024.128427
Article Details
Abstract views: 256

