Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The article is devoted to modern software systems (SS) and improving their quality using machine learning methods, including the Integrated Gradients (IG) method. Key problems and limitation of IG use in real operating conditions of the SS, such as complexity of systems, correlation of variables and computing efficiency are considered. Ways to improve IG, including adaptive integration, spatial smoothing and use of weight factors, are proposed. Experimental results are described that confirm the effectiveness of the proposed modifications to improve the quality of the SS. Adaptive integration has achieved the best results (MAE 0.11), adaptability and interpretation.
Keywords:
References
[1] Akimova E. M., Kisel T. N.: Integrated application of strategic analysis methods. Kant 39(2), 2021, 10–16 [https://doi.org/10.24923/2222-243x.2021-39.2]. DOI: https://doi.org/10.24923/2222-243X.2021-39.2
[2] Butler M., Petre L., Sere K.: Integrated formal methods. Springer Berlin, Heidelberg 2002 [https://doi.org/10.1007/3-540-47884-1]. DOI: https://doi.org/10.1007/3-540-47884-1
[3] Dheeraj K. N., et al.: Crop quality prediction using ml and neural networks. International Journal on Cybernetics & Informatics 10(2), 2021, 7–11 [https://doi.org/10.5121/ijci.2021.100202]. DOI: https://doi.org/10.5121/ijci.2021.100202
[4] Evgeni P.: Testability analysis methods. Evgeni P.: Digital integrated circuits. Design-for-Test Using Simulink and Stateflow. CRC Press, Boca Raton 2007 [https://doi.org/10.1201/9781315222110-4]. DOI: https://doi.org/10.1201/9781315222110-4
[5] Fumagalli F., et al.: Incremental permutation feature importance (iPFI): Towards online explanations on data streams. Machine Learning 112, 2023, 4863–4903 [https://doi.org/10.1007/s10994-023-06385-y]. DOI: https://doi.org/10.1007/s10994-023-06385-y
[6] Gelperin D.: The power of integrated methods. ACM SIGSOFT Software Engineering Notes 19(4), 1994, 77–78 [https://doi.org/10.1145/190679.190687]. DOI: https://doi.org/10.1145/190679.190687
[7] Gleirscher M., Foster S., Woodcock J.: New opportunities for integrated formal methods. ACM Computing Surveys 52(6), 2020, 1–36 [https://doi.org/10.1145/3357231]. DOI: https://doi.org/10.1145/3357231
[8] Goldina A. A.: Methods of information disclosure in integrated reporting. Models, Systems, Networks in Economics, Technology, Nature and Society 3, 2021 [https://doi.org/10.21685/2227-8486-2021-3-2]. DOI: https://doi.org/10.21685/2227-8486-2021-3-2
[9] Hahn S.-J., Lee B.-H.: Quality evaluation to small scaled software implementation result. The Journal of Korean Institute of Information Technology 21(1), 2023, 1–10 [https://doi.org/10.14801/jkiit.2023.21.1.1]. DOI: https://doi.org/10.14801/jkiit.2023.21.1.1
[10] Hooker J. N.: Optimization basics. Integrated methods for optimization. Springer US, 2011 [https://doi.org/10.1007/978-1-4614-1900-6_3]. DOI: https://doi.org/10.1007/978-1-4614-1900-6_3
[11] Indi M. M., et al.: Evaluation of the effectiveness of technology-based project management systems for software development. Global International Journal of Innovative Research 1(2), 2023, 175–181 [https://doi.org/10.59613/global.v1i2.30]. DOI: https://doi.org/10.59613/global.v1i2.30
[12] Jha K. N., Chockalingam C. T.: Prediction of quality performance using artificial neural networks. Journal of Advances in Management Research 6(1), 2009, 70–86 [https://doi.org/10.1108/09727980910972172]. DOI: https://doi.org/10.1108/09727980910972172
[13] Kamaletdinov S., et al.: Evaluation of data quality based on Bayesian networks in railway rolling stock monitoring systems. E3S Web of Conferences 460, 2023, 04014 [https://doi.org/10.1051/e3sconf/202346004014]. DOI: https://doi.org/10.1051/e3sconf/202346004014
[14] Kaneko H.: Cross‐validated permutation feature importance considering correlation between features. Analytical Science Advances 3(9-10), 2022, 278–287 [https://doi.org/10.1002/ansa.202200018]. DOI: https://doi.org/10.1002/ansa.202200018
[15] Kim S.-H.: Integrated development environment for java native methods. The Journal of the Korea Contents Association 10(7), 2010, 122–132 [https://doi.org/10.5392/jkca.2010.10.7.122]. DOI: https://doi.org/10.5392/JKCA.2010.10.7.122
[16] Movsessian A., Cava D. G., Tcherniak D.: Interpretable machine learning in damage detection using shapley additive explanations. ASME J. Risk Uncertainty Part B. 8(2), 2022 [https://doi.org/10.1115/1.4053304]. DOI: https://doi.org/10.1115/1.4053304
[17] Ni H., Yin H.: Exchange rate prediction using hybrid neural networks and trading indicators. Neurocomputing 72(13-15), 2009, 2815–2823 [https://doi.org/10.1016/j.neucom.2008.09.023]. DOI: https://doi.org/10.1016/j.neucom.2008.09.023
[18] Oden J. T., Robinson J.: Integrated theory of finite element methods. Mathematics of Computation 29(132), 1975, 1157 [https://doi.org/10.2307/2005763]. DOI: https://doi.org/10.2307/2005763
[19] Pankov P. S., Tagaeva S. B.: Systems of differential equations and computer phenomena. Herald of Institute Mathematics of the National Academy of Sciences of the Kyrgyz Republic 2, 2020, 86–93 [https://doi.org/10.52448/16948173_2020_2_86]. DOI: https://doi.org/10.52448/16948173_2020_2_86
[20] Roser M. E., et al.: Investigating reasoning with multiple integrated neuroscientific methods. Frontiers in Human Neuroscience 9, 2015, [https://doi.org/10.3389/fnhum.2015.00041]. DOI: https://doi.org/10.3389/fnhum.2015.00041
[21] Smaling A.: Mixed, integrated, merged or hybrid methods? Kwalon 22(3), 2017. [https://doi.org/10.5117/2017.022.003.001]. DOI: https://doi.org/10.5117/2017.022.003.001
[22] ter Beek M. H., Monahan R.: Integrated formal methods. Springer International Publishing. 2022 [https://doi.org/10.1007/978-3-031-07727-2]. DOI: https://doi.org/10.1007/978-3-031-07727-2
[23] Wang S., Zhang Y.: Grad-CAM: Understanding AI models. Computers, Materials & Continua 76(2), 2023, 1321–1324 [https://doi.org/10.32604/cmc.2023.041419]. DOI: https://doi.org/10.32604/cmc.2023.041419
[24] Yoon H.: A quantitative evaluation for usability under software quality models. International Journal on Recent and Innovation Trends in Computing and Communication 11(3), 2023, 24–29 [https://doi.org/10.17762/ijritcc.v11i3.6194]. DOI: https://doi.org/10.17762/ijritcc.v11i3.6194
[25] Yue C., et al.: An entropy-based group decision-making approach for software quality evaluation. Expert Systems With Applications 238C, 2023, 121979 [https://doi.org/10.1016/j.eswa.2023.121979]. DOI: https://doi.org/10.1016/j.eswa.2023.121979
[26] Zhang X., et al.: Informative data selection with uncertainty for multimodal object detection. IEEE Transactions on Neural Networks and Learning Systems 35(10), 2023, 13561-13573 [https://doi.org/10.1109/tnnls.2023.3270159]. DOI: https://doi.org/10.1109/TNNLS.2023.3270159
[27] Zhao J., et al.: Evaluating the impact of uncertainty visualization on model reliance. IEEE Transactions on Visualization and Computer Graphics 30(7), 2023, 4093–4107 [https://doi.org/10.1109/tvcg.2023.3251950]. DOI: https://doi.org/10.1109/TVCG.2023.3251950
[28] Zhao Z., Severini T. A.: Integrated likelihood computation methods. Computational Statistics 32(1), 2016, 281–313 [https://doi.org/10.1007/s00180-016-0677-z]. DOI: https://doi.org/10.1007/s00180-016-0677-z
Article Details
Abstract views: 290

