[1] Aimaiti Y. et al.: War Related Building Damage Assessment in Kyiv, Ukraine, Using Sentinel-1 Radar and Sentinel-2 Optical Images. Remote Sens. 14, 2022, 6239 [https://doi.org/10.3390/rs14246239].
DOI: https://doi.org/10.3390/rs14246239
[2] Ahmed F., et al.: Recent Advances in Unmanned Aerial Vehicles: A Review. Arabian Journal for Science and Engineering 47(7), 2022, 7963–7984.
DOI: https://doi.org/10.1007/s13369-022-06738-0
[3] Ansari M. et al.: Significance of Color Spaces and Their Selection for Image Processing: A Survey. Recent Advances in Computer Science and Communications 15(7), 2022, 946-956.
DOI: https://doi.org/10.2174/2666255814666210308152108
[4] Bouguettaya A., et al.: Deep Learning Techniques to Classify Agricultural Crops through UAV Imagery: A Review. Neural Computing and Applications 34(12), 2022, 9511-9536.
DOI: https://doi.org/10.1007/s00521-022-07104-9
[5] Calantropio A. et al.: Deep Learning for Automatic Building Damage Assessment: Application in Post-Disaster Scenarios Using UAV Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1, 2021, 113-120.
DOI: https://doi.org/10.5194/isprs-annals-V-1-2021-113-2021
[6] Choi H. W. et al.: An Overview of Drone Applications in the Construction Industry. Drones 7(8), 2023, 515.
DOI: https://doi.org/10.3390/drones7080515
[7] Feroz S., Abu Dabous S.: UAV-Based Remote Sensing Applications for Bridge Condition Assessment. Remote Sensing 13(9), 2021, 1809.
DOI: https://doi.org/10.3390/rs13091809
[8] Ghandour Ali J., Jezzini A. A.: Post-War Building Damage Detection. Proceedings 2(7), 2018, 359 [https://doi.org/10.3390/ecrs-2-05172].
DOI: https://doi.org/10.3390/ecrs-2-05172
[9] He K. et al.: Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770-778.
DOI: https://doi.org/10.1109/CVPR.2016.90
[10] Jiao Z. et al.: A Deep Learning Based Forest Fire Detection Approach Using UAV and YOLOv3. 1st International Conference on Industrial Artificial Intelligence (IAI), IEEE, 2019, 1-5.
DOI: https://doi.org/10.1109/ICIAI.2019.8850815
[11] Levchenko N. M., Beiner P. S., Beiner N. V.: Reconstruction of buildings using BIM technologies during city renewal in Ukraine. Physical Metallurgy and Heat Treatment of Metals 4(4), 2022, 64-70.
DOI: https://doi.org/10.30838/J.PMHTM.2413.271222.64.912
[12] Mahami H. et al.: Material Recognition for Automated Progress Monitoring Using Deep Learning Methods. preprint arXiv: 2006.16344, 2020.
[13] Mavroulis S. et al.: UAV and GIS Based Rapid Earthquake-Induced Building Damage Assessment and Methodology for EMS-98 Isoseismal Map Drawing: The June 12, 2017 Mw 6.3 Lesvos (Northeastern Aegean, Greece) Earthquake. International Journal of Disaster Risk Reduction 37, 2019, 101169.
DOI: https://doi.org/10.1016/j.ijdrr.2019.101169
[14] Myroniuk D. M., Blagitko B. Ya., Zayachuk I. M.: Computer Simulation of Deep Learning for Image Recognition. Computer Printing Technologies 42(2), 2019, 57-71.
DOI: https://doi.org/10.32403/2411-9210-2019-2-42-57-63
[15] Paymode A. S., Malode V. B.: Transfer Learning for Multi-Crop Leaf Disease Image Classification Using Convolutional Neural Network VGG. Artificial Intelligence in Agriculture 6, 2022, 23-33.
DOI: https://doi.org/10.1016/j.aiia.2021.12.002
[16] Ronneberger O., Fischer P., Brox T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. 18th International Conference Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, Germany, 2015, Part III, Springer International Publishing, 2015, 234-241.
DOI: https://doi.org/10.1007/978-3-319-24574-4_28
[17] Sony S. et al.: A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques. Engineering Structures 226, 2021, 111347.
DOI: https://doi.org/10.1016/j.engstruct.2020.111347
[18] Sonkar S. et al.: Real-Time Object Detection and Recognition Using Fixed-Wing Lale VTOL UAV. IEEE Sensors Journal 22(21), 2022, 20738-20747.
DOI: https://doi.org/10.1109/JSEN.2022.3206345
[19] Su S., Nawata T.: Demolished Building Detection from Aerial Imagery Using Deep Learning. Proceedings of the ICA 2, 2019, 122.
DOI: https://doi.org/10.5194/ica-proc-2-122-2019
[20] Wang H. et al.: YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8. IEEE Transactions on Instrumentation and Measurement, 2024.
DOI: https://doi.org/10.1109/TIM.2024.3379090
[21] Wang, S. et al.: A Deep-Learning-Based Sea Search and Rescue Algorithm by UAV Remote Sensing. IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), IEEE, 2018, 1-5.
DOI: https://doi.org/10.1109/GNCC42960.2018.9019134
[22] Wu W. et al.: Coupling Deep Learning and UAV for Infrastructure Condition Assessment Automation. IEEE International Smart Cities Conference (ISC2), IEEE, 2018, 1-7.
DOI: https://doi.org/10.1109/ISC2.2018.8656971
[23] Yin D. et al.: Mask R-CNN for Object Detection and Segmentation: A Comprehensive Review. Journal of Visual Communication and Image Representation 80, 2021, 103278.
DOI: https://doi.org/10.1016/j.jvcir.2021.103278