Application of YOLO and U-Net models for building material identification on segmented images
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This paper is devoted to the analysis of existing convolutional neural networks and experimental verification of the YOLO and U-Net architectures for the identification and classification of building materials based on images of destroyed structures. The aim of the study is to determine the effectiveness of these models in the tasks of recognising materials suitable for reuse and recycling. This will help reduce construction waste and introduce a more environmentally friendly approach to resource management. The study examined several modern deep learning models for image processing, including Faster R-CNN, Mask R-CNN, FCN (Fully Convolutional Networks), and SegNet. However, the choice was made on the YOLO and U-Net architectures. YOLO is used for fast object identification in images, which allows for quick detection and classification of building materials, and U-Net is used for detailed image segmentation, providing accurate determination of the structure and composition of building materials. Each of these models has been adapted to the specific requirements of building materials analysis in the context of collapsed structures. Experimental results have shown that the use of these models allows achieving high accuracy of segmentation of images of destroyed buildings, which makes them promising for use in automated resource control systems.
Keywords:
References
[1] Aimaiti Y. et al.: War Related Building Damage Assessment in Kyiv, Ukraine, Using Sentinel-1 Radar and Sentinel-2 Optical Images. Remote Sens. 14, 2022, 6239 [https://doi.org/10.3390/rs14246239]. DOI: https://doi.org/10.3390/rs14246239
[2] Ahmed F., et al.: Recent Advances in Unmanned Aerial Vehicles: A Review. Arabian Journal for Science and Engineering 47(7), 2022, 7963–7984. DOI: https://doi.org/10.1007/s13369-022-06738-0
[3] Ansari M. et al.: Significance of Color Spaces and Their Selection for Image Processing: A Survey. Recent Advances in Computer Science and Communications 15(7), 2022, 946-956. DOI: https://doi.org/10.2174/2666255814666210308152108
[4] Bouguettaya A., et al.: Deep Learning Techniques to Classify Agricultural Crops through UAV Imagery: A Review. Neural Computing and Applications 34(12), 2022, 9511-9536. DOI: https://doi.org/10.1007/s00521-022-07104-9
[5] Calantropio A. et al.: Deep Learning for Automatic Building Damage Assessment: Application in Post-Disaster Scenarios Using UAV Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1, 2021, 113-120. DOI: https://doi.org/10.5194/isprs-annals-V-1-2021-113-2021
[6] Choi H. W. et al.: An Overview of Drone Applications in the Construction Industry. Drones 7(8), 2023, 515. DOI: https://doi.org/10.3390/drones7080515
[7] Feroz S., Abu Dabous S.: UAV-Based Remote Sensing Applications for Bridge Condition Assessment. Remote Sensing 13(9), 2021, 1809. DOI: https://doi.org/10.3390/rs13091809
[8] Ghandour Ali J., Jezzini A. A.: Post-War Building Damage Detection. Proceedings 2(7), 2018, 359 [https://doi.org/10.3390/ecrs-2-05172]. DOI: https://doi.org/10.3390/ecrs-2-05172
[9] He K. et al.: Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770-778. DOI: https://doi.org/10.1109/CVPR.2016.90
[10] Jiao Z. et al.: A Deep Learning Based Forest Fire Detection Approach Using UAV and YOLOv3. 1st International Conference on Industrial Artificial Intelligence (IAI), IEEE, 2019, 1-5. DOI: https://doi.org/10.1109/ICIAI.2019.8850815
[11] Levchenko N. M., Beiner P. S., Beiner N. V.: Reconstruction of buildings using BIM technologies during city renewal in Ukraine. Physical Metallurgy and Heat Treatment of Metals 4(4), 2022, 64-70. DOI: https://doi.org/10.30838/J.PMHTM.2413.271222.64.912
[12] Mahami H. et al.: Material Recognition for Automated Progress Monitoring Using Deep Learning Methods. preprint arXiv: 2006.16344, 2020.
[13] Mavroulis S. et al.: UAV and GIS Based Rapid Earthquake-Induced Building Damage Assessment and Methodology for EMS-98 Isoseismal Map Drawing: The June 12, 2017 Mw 6.3 Lesvos (Northeastern Aegean, Greece) Earthquake. International Journal of Disaster Risk Reduction 37, 2019, 101169. DOI: https://doi.org/10.1016/j.ijdrr.2019.101169
[14] Myroniuk D. M., Blagitko B. Ya., Zayachuk I. M.: Computer Simulation of Deep Learning for Image Recognition. Computer Printing Technologies 42(2), 2019, 57-71. DOI: https://doi.org/10.32403/2411-9210-2019-2-42-57-63
[15] Paymode A. S., Malode V. B.: Transfer Learning for Multi-Crop Leaf Disease Image Classification Using Convolutional Neural Network VGG. Artificial Intelligence in Agriculture 6, 2022, 23-33. DOI: https://doi.org/10.1016/j.aiia.2021.12.002
[16] Ronneberger O., Fischer P., Brox T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. 18th International Conference Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, Germany, 2015, Part III, Springer International Publishing, 2015, 234-241. DOI: https://doi.org/10.1007/978-3-319-24574-4_28
[17] Sony S. et al.: A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques. Engineering Structures 226, 2021, 111347. DOI: https://doi.org/10.1016/j.engstruct.2020.111347
[18] Sonkar S. et al.: Real-Time Object Detection and Recognition Using Fixed-Wing Lale VTOL UAV. IEEE Sensors Journal 22(21), 2022, 20738-20747. DOI: https://doi.org/10.1109/JSEN.2022.3206345
[19] Su S., Nawata T.: Demolished Building Detection from Aerial Imagery Using Deep Learning. Proceedings of the ICA 2, 2019, 122. DOI: https://doi.org/10.5194/ica-proc-2-122-2019
[20] Wang H. et al.: YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8. IEEE Transactions on Instrumentation and Measurement, 2024. DOI: https://doi.org/10.1109/TIM.2024.3379090
[21] Wang, S. et al.: A Deep-Learning-Based Sea Search and Rescue Algorithm by UAV Remote Sensing. IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), IEEE, 2018, 1-5. DOI: https://doi.org/10.1109/GNCC42960.2018.9019134
[22] Wu W. et al.: Coupling Deep Learning and UAV for Infrastructure Condition Assessment Automation. IEEE International Smart Cities Conference (ISC2), IEEE, 2018, 1-7. DOI: https://doi.org/10.1109/ISC2.2018.8656971
[23] Yin D. et al.: Mask R-CNN for Object Detection and Segmentation: A Comprehensive Review. Journal of Visual Communication and Image Representation 80, 2021, 103278. DOI: https://doi.org/10.1016/j.jvcir.2021.103278
Article Details
Abstract views: 365
Mykhailo Bezuglyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
Doktor nauk technicznych, profesor Katedry zintegrowanych komputerowo technologii produkcji urządzeń, Narodowy Techniczny Uniwersytet Ukrainy „Politechnika Kijowska im. Igora Sikorskiego”.
Zainteresowania: biofizyka, optyka, teoria prawdopodobieństwa, statystyka, metodologia badań.

