Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The paper proposes the use of multifractal analysis by algorithmic implementation of coordinate reconstructed distributions of linear birefringence magnitude and obtaining a spectrum of fractal dimensions of dehydrated polycrystalline blood films. The results of the diagnostic application of laser Jones matrix theziography methods of multifractal structure of polycrystalline networks of dehydrated films of blood for differential diagnostics of inflammatory and pathological conditions – "norm – sepsis" are presented. For dehydrated blood films, histograms and maps of the amplitude distributions of wavelet coefficients of theziograms of optical anisotropy and multifractal spectra of theziograms of optical anisotropy of polycrystalline supramolecular networks are given. Tables of the values of the central statistical moments of the 1st – 4th orders, which the Jones matrix characterize, wavelet and multifractal parameters of theziograms of phase anisotropy of dehydrated blood films, are systematized, and the set of statistical parameters more sensitive to changes in the polycrystalline structure of biological samples – diagnostic markers – is determined. Within the framework of statistical analysis of multifractal spectra and wavelet maps, it was determined that the algorithmically reconstructed birefringence theziogram allows identifying the most sensitive markers to changes in the anisotropic optical structure of blood caused by septic manifestations.
Keywords:
References
[1] Angelsky O. V., Ushenko A., Ushenko Y.: Statistical and fractal structure of biological tissue Mueller matrix images. Angelsky O. (ed.): Optical Correlation Techniques and Applications. SPIE, 2007, 213–265 [https://doi.org/10.1117/3.714999.ch4]. DOI: https://doi.org/10.1117/3.714999.ch4
[2] Daubechies I.: Wavelets on the interval. Meyer Y., Roques S. (eds.): Progress in Wavelet Analysis and Applications. Atlantica Seguier Frontieres 1993, 95–107.
[3] Dong, Y. et al.: A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging. 40(12), 2021, 3728–3738. DOI: https://doi.org/10.1109/TMI.2021.3097200
[4] Farge M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24(1), 1992, 395–458. DOI: https://doi.org/10.1146/annurev.fl.24.010192.002143
[5] Garazdyuk M. S., et al.: Polarization-phase images of liquor polycrystalline films in determining time of death. Applied optics 55(12), 2016, B67–B71. DOI: https://doi.org/10.1364/AO.55.000B67
[6] Ghosh N.: Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16, 110801, 2011. DOI: https://doi.org/10.1117/1.3652896
[7] Jacques S. L.: Polarized light imaging of biological tissues. Boas D., Pitris C., Ramanujam N. (eds.): Handbook of Biomedical Optics 2. CRC Press, 2011, 649–669.
[8] Jóźwicki R., et al.: Automatic polarimetric system for early medical diagnosis by biotissue testing. Optica Applicata 32(4), 2002, 603–612.
[9] Kim M, et al.: Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J Eur Opt Soc Rapid Publ. 8(2), 2022. DOI: https://doi.org/10.1051/jeos/2022011
[10] Layden D., Ghosh N., Vitkin I. A.: Quantitative polarimetry for tissue characterization and diagnosis. Wang R. K., Tuchin V. V. (eds.): Advanced Biophotonics: Tissue Optical Sectioning. CRC Press, 2013, 73–108. DOI: https://doi.org/10.1201/b15256-3
[11] Lee H. R., et al.: Digital histology with Mueller polarimetry and FastDBSCAN. Appl Opt. 61(32), 2022 [https://doi.org/10.1364/AO.461732]. DOI: https://doi.org/10.1364/AO.473095
[12] Lee H. R., et al.: Digital histology with Mueller microscopy: how to mitigate an impact of tissue cut thickness fluctuations. J Biomed Opt. 24(7), 076004, 2019 [https://doi.org/10.1117/1.JBO.24.7.076004]. DOI: https://doi.org/10.1117/1.JBO.24.7.076004
[13] Lee H. R., et al.: Mueller microscopy of anisotropic scattering media: theory and experiments. Proc SPIE 10679, 2018, 1067718 [https://doi.org/10.1117/12.2305331]. DOI: https://doi.org/10.1117/12.2305331
[14] Li P., et al.: Analysis of tissue microstructure with Mueller microscopy: logarithmic decomposition and Monte Carlo modeling. J Biomed Opt. 25(1), 2020, 015002 [https://doi.org/10.1117/1.JBO.25.1.015002]. DOI: https://doi.org/10.1117/1.JBO.25.1.015002
[15] Ma H., He H., Ramella-Roman J. C.: Mueller matrix microscopy. Ramella-Roman J. C., Novikova T. (eds.): Polarized Light in Biomedical Imaging and Sensing. Springer, Cham 2023 [https://doi.org/10.1007/978-3-030-77274-6_2]. DOI: https://doi.org/10.1007/978-3-031-04741-1
[16] Mandelbrot B. B.: Fractals and Multifractals: Noise, Turbulence and Galaxies. Springer+Verlag, New York 1989.
[17] Olar E. I., Ushenko A. G., Ushenko Y. A.: Correlation microstructure of the Jones matrices for multifractal networks of biotissues. Laser Physics 14(7), 2004, 1012–1018.
[18] Pishak V., et al.: Polarization structure of biospeckle fields in crosslinked tissues of a human organism: I. Vector structure of skin biospeckles. Proc SPIE 3317, 1997 [https://doi.org/10.1117/12.295715]. DOI: https://doi.org/10.1117/12.295715
[19] Shankaran V., Walsh Jr. J. T., Maitland D. J.: Comparative study of polarized light propagation in biological tissues. J. Biomed. Opt. 7, 2002, 300–306. DOI: https://doi.org/10.1117/1.1483318
[20] Vitkin A., Ghosh N., de Martino A.: Tissue Polarimetry. Andrews D. L. (eds.): Photonics: Scientific Foundations, Technology and Applications. John Wiley & Sons Ltd., 2015, 239–321. DOI: https://doi.org/10.1002/9781119011804.ch7
[21] Ushenko A. G., et al.: Stokes polarimetry of biotissues. Fourth International Conference on Correlation Optics 3904, 1999, 527–533. DOI: https://doi.org/10.1117/12.370448
[22] Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book, 2019. DOI: https://doi.org/10.1201/9780429057618
[23] Zabolotna N. I., et al.: ROC analysis of informativeness of mapping of the ellipticity distributions of blood plasma films laser images polarization in the evaluation of pathological changes in the breast. Proc. SPIE 11456, 2020, 114560I. DOI: https://doi.org/10.1117/12.2569775
Article Details
Abstract views: 229

