Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This article presents a comprehensive study of the fabrication and modeling of a CdS/porous-CdTe/CdTe heterostructure aimed at improving solar cell efficiency. The research focuses on two critical processes: the electrochemical etching for producing porous-CdTe substrates and the chemical surface deposition method for applying CdS films. The structural and optical characteristics of the fabricated heterostructure were analyzed using SEM and EDAX methods, confirming the formation of a continuous CdS layer over a porous-CdTe layer. The thickness of the porous-CdTe and CdS layers was 1.0 and 2.0 μm, respectively. The obtained thick values of the manufactured structure were used to model the CdS/porous-CdTe/CdTe heterostructure in the PC1D-program in order to find the optimal solar cell parameters. The photoconverter current-voltage curve was obtained from the PC1D-program. The theoretically calculated efficiency was 21.6%. The study further explored the impact of varying the thickness of the CdS window layer and the porous-CdTe buffer layer on photoconverter performance. The efficiency of the CdS/porous-CdTe/CdTe photoconverter reaches maximum values at a thickness of 2.3-2.4 μm and 1.9 μm for CdS and porous-CdTe layers, respectively. Additionally, the buffer layer's porosity enhanced light absorption, contributing to higher carrier generation rates. In order to increase the CdS/porous-CdTe/CdTe photoconverter efficiency, the single-layer and double-layer antireflective coatings used, which are most often in the CdS/CdTe solar cells production, was investigated. To further optimize the photoconverter, anti-reflective coatings were investigated using the matrix method. The results showed that the best reflectance is observed for the ITO/ZnO double anti-reflective coating. The solar cell efficiency with this coating was 22.8% at 50/30 nm thicknesses. Additional research in the modifying the porosity of the substrates and its effect on the photoconverter characteristics may lead to the discovery of new opportunities increasing their efficiency and stability. The findings underscore the potential of CdS/porous-CdTe/CdTe heterostructures as efficient photovoltaic devices.
Keywords:
References
[1] Agoundedemba M., et al.: Improving FTO/ZnO/In₂S₃/CuInS₂/Mo Solar Cell Efficiency by Optimizing Thickness and Carrier ZnO, In₂S₃, and CuInS₂ Thin Film Concentrations Using Silvaco-Atlas Software. International Journal of Renewable Energy Development 12(6), 2023, 1131–1140 [https://doi.org/10.14710/ijred.2023.57800]. DOI: https://doi.org/10.14710/ijred.2023.57800
[2] Bond W.: Measurement of the Refractive Indices of Several Crystals. Journal of Applied Physics 36, 1965, 1674–1677 [https://doi.org/10.1063/1.1703106]. DOI: https://doi.org/10.1063/1.1703106
[3] Compaan A., et al.: High Efficiency, Magnetron Sputtered CdS/CdTe Solar Cells. Solar Energy 77(6), 2004, 815–822 [https://doi.org/10.1016/j.solener.2004.06.013]. DOI: https://doi.org/10.1016/j.solener.2004.06.013
[4] Debenham M.: Refractive Indices of Zinc Sulfide in the 0.405–13 μm Wavelength Range. Applied Optics 23, 1984, 2238–2239 [https://doi.org/10.1364/ao.23.002238]. DOI: https://doi.org/10.1364/AO.23.002238
[5] Devore J.: Refractive Indices of Rutile and Sphalerite. Journal of the Optical Society of America 41, 1951, 416–419 [https://doi.org/10.1364/JOSA.41.000416]. DOI: https://doi.org/10.1364/JOSA.41.000416
[6] Diadenchuk A., Kidalov V.: n-ZnO:Al/Porous-CdTe/p-CdTe Heterostructures as Photoelectric Converters. Nanosystemy, Nanomaterialy, Nanotekhnolohii 15(3), 2017, 487–494. DOI: https://doi.org/10.15407/nnn.15.03.0487
[7] Diadenchuk A., Kidalov V.: Use of the Porous A3B5 Compounds for Supercapacitor Electrodes. Journal of Nano-& Electronic Physics 7(1), 2015, 01021-1–01021-4.
[8] Double Layer Anti Reflection Coatings. PV Education [https://www.pveducation.org/pvcdrom/design-of-silicon-cells/double-layer-anti-reflection-coatings] (available 26 Nov. 2024).
[9] Dyadenchuk A., Domina N., Oleksenko R.: Simulation of Solar Element Characteristics Based on Porous Silicon. IEEE 4th International Conference on Modern Electrical and Energy Systems – MEES, 2022, 1–4 [https://doi.org/10.1109/MEES58014.2022.10005773]. DOI: https://doi.org/10.1109/MEES58014.2022.10005773
[10] Dyadenchuk A., Kidalov V.: Films CdS Grown on Porous Si Substrate. Journal of Nano- & Electronic Physics 10(1), 2018, 01007 [https://doi.org/10.21272/jnep.10(1).01007]. DOI: https://doi.org/10.21272/jnep.10(1).01007
[11] Dyadenchuk A., Oleksenko R.: Simulation Photoconverters of Porous-Si/Si with Different Anti-Reflective Coatings. International Journal of Mathematics & Physics 14(2), 2023, 89–94 [https://doi.org/10.26577/ijmph.2023.v14.i2.010]. DOI: https://doi.org/10.26577/ijmph.2023.v14.i2.010
[12] Fardi H., Buny F.: Characterization and Modeling of CdS/CdTe Solar Cell Heterojunction Thin-Film for High Efficiency Performance. International Journal of Photoenergy 2013, 6 [https://doi.org/10.1155/2013/576952]. DOI: https://doi.org/10.1155/2013/576952
[13] Gajanayake G. K. U. P., et al.: Effect of CdTe Nucleation Layer on the CdS/CdTe Performance Thin Film Solar Cells. Journal of Materials Science: Materials in Electronics 34(6), 2023, 508 [https://doi.org/10.1007/s10854-023-09895-6]. DOI: https://doi.org/10.1007/s10854-023-09895-6
[14] Guminilovych R., et al.: Modeling of Chemical Surface Deposition (CSD) of CdS and CdSe Semiconductor Thin Films. Chemistry & Chemical Technology 9, 2015, 287–292 [https://doi.org/10.23939/chcht09.03.287]. DOI: https://doi.org/10.23939/chcht09.03.287
[15] Han J., et al.: Preparation and ZnS/CdS Bi-Layer Characterization for CdTe Solar Cell Application. Journal of Physics and Chemistry of Solids 74(12), 2013, 1879–1883 [https://doi.org/10.1016/j.jpcs.2013.08.004]. DOI: https://doi.org/10.1016/j.jpcs.2013.08.004
[16] Ilchuk G., et al.: Photosensitivity of n-CdS/p-CdTe Heterojunctions Obtained by Chemical Surface Deposition of CdS. Semiconductors 44, 2010, 318–320 [https://doi.org/10.1134/S1063782610030085]. DOI: https://doi.org/10.1134/S1063782610030085
[17] Jiang C., et al.: Simulation of Silicon Solar Cell Using PC1D. Advanced Materials Research 383, 2012, 7032–7036 [https://doi.org/10.4028/www.scientific.net/AMR.383-390.7032]. DOI: https://doi.org/10.4028/www.scientific.net/AMR.383-390.7032
[18] Kapadnis R., et al.: Cadmium Telluride/Cadmium Sulfide Thin Films Solar Cells: A Review. ES Energy & Environment 10(2), 2020, 3–12, [https://doi.org/10.30919/esee8c706]. DOI: https://doi.org/10.30919/esee8c706
[19] Khaledi P., Behboudnia M., Karimi M.: Optimization and Numerical Modeling of TCO/SnO₂/CdS/CdTe Solar Cells. International Journal of Optics, 2023, 7184080 [https://doi.org/10.1155/2023/7184080]. DOI: https://doi.org/10.1155/2023/7184080
[20] König T., et al.: Electrically Tunable Plasmonic Behavior of Nanocube-Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer. ACS Nano 8, 2014, 6182–6192 [https://doi.org/10.1021/nn501601e]. DOI: https://doi.org/10.1021/nn501601e
[21] Krishnaiah V., et al.: Optimizing ZnO/CdS/CdTe Bilayer Structures for Enhanced CdTe Solar Cell Efficiency: A Machine Learning Approach. MRS Advances 2024, 1–6 [https://doi.org/10.1557/s43580-024-00772-w]. DOI: https://doi.org/10.1557/s43580-024-00772-w
[22] Kuddus A., et al.: Enhancement of the CdS/CdTe Heterojunction Solar Cell Performance Using TiO₂/ZnO Bi-Layer ARC and V₂O₅ BSF Layers: A Simulation Approach. The European Physical Journal Applied Physics 92(2), 2020, 20901 [https://doi.org/10.1051/epjap/2020200213]. DOI: https://doi.org/10.1051/epjap/2020200213
[23] Lakmal A. A. I., et al.: Thermally Evaporated CdS Thin Films for CdS/CdTe Solar Cells: Effect of Substrate Temperature on CdS Layer. Materials Science and Engineering: B 273, 2021, 115406 [https://doi.org/10.1016/j.mseb.2021.115406]. DOI: https://doi.org/10.1016/j.mseb.2021.115406
[24] Lee J.: Comparison of CdS Films Deposited by Different Techniques: Effects on CdTe Solar Cell. Applied Surface Science 252(5), 2005, 1398–1403 [https://doi.org/10.1016/j.apsusc.2005.02.110]. DOI: https://doi.org/10.1016/j.apsusc.2005.02.110
[25] Li S., Li X., Zhao H.: Synthesis and Electrical Properties of P-Type CdTe Nanowires. Micro & Nano Letters 8(6), 2013, 308–310 [https://doi.org/10.1049/mnl.2013.0144]. DOI: https://doi.org/10.1049/mnl.2013.0144
[26] Malitson I.: Interspecimen Comparison of the Refractive Index of Fused Silica. Journal of the Optical Society of America 55, 1965, 1205–1208 [https://doi.org/10.1364/JOSA.55.001205]. DOI: https://doi.org/10.1364/JOSA.55.001205
[27] Matei E., et al.: Electrical Properties of Single CdTe Nanowires. Beilstein Journal of Nanotechnology 6(1), 2015, 444–450 [https://doi.org/10.3762/bjna6.45]. DOI: https://doi.org/10.3762/bjnano.6.45
[28] Matin M., et al.: A Study Towards the Possibility of Ultra Thin CdS/CdTe High Efficiency Solar Cells from Numerical Analysis. WSEAS Transactions on Environment and Development 6(8), 2010, 571–580. DOI: https://doi.org/10.1155/2010/578580
[29] Mozaffari S.: Device Modeling and Performance Analysis of an All-Inorganic Lead-Free Ag₂BiI₅ Rudorffite-Based Solar Cell with AgSCN as HTL via GPVDM Simulation Software. Journal of Computational Electronics 2024, 1–13 [https://doi.org/10.1007/s10825-024-02157-6]. DOI: https://doi.org/10.1007/s10825-024-02157-6
[30] Olusola O., Madugu M., Dharmadasa I.: Investigating the Electronic Properties of Multi-Junction ZnS/CdS/CdTe Graded Bandgap Solar Cells. Materials Chemistry and Physics 191, 2017, 145–150 [https://doi.org/10.1016/j.matchemphys.2017.01.027]. DOI: https://doi.org/10.1016/j.matchemphys.2017.01.027
[31] Peña J., et al.: The ZnO-Reflectance Effect on the Heterojunction ITO/ZnO/CdS/CdTe. 38th IEEE Photovoltaic Specialists Conference, 2012, 002021–002023 [https://doi.org/10.1109/PVSC.2012.6317995]. DOI: https://doi.org/10.1109/PVSC.2012.6317995
[32] Politanskyi R., et al.: Simulation of Anti-Reflecting Dielectric Films by the Interference Matrix Method. Optical Materials 102, 2020, 109782 [https://doi.org/10.1016/j.optmat.2020.109782]. DOI: https://doi.org/10.1016/j.optmat.2020.109782
[33] Rios-Flores A., et al.: Procedure to Obtain Higher than 14% Efficiency Rate Thin Film CdS/CdTe Solar Cells Activated with HCF2Cl Gas. Solar Energy 86(2), 2012, 780–785 [https://doi.org/10.1016/j.solener.2011.12.002]. DOI: https://doi.org/10.1016/j.solener.2011.12.002
[34] Roy A., Majumdar A.: Optimization of CuO/CdTe/CdS/TiO₂ Solar Cell Efficiency: A Numerical Simulation Modeling. Optik 251, 2022, 168456 [https://doi.org/10.1016/j.ijleo.2021.168456]. DOI: https://doi.org/10.1016/j.ijleo.2021.168456
[35] Sahouane N., Zerga A.: Optimization of Antireflection Multilayer for Industrial Crystalline Silicon Solar Cells. Energy Procedia 44, 2014, 118–125 [https://doi.org/10.1016/j.egypro.2013.12.017]. DOI: https://doi.org/10.1016/j.egypro.2013.12.017
[36] Sharma R., Gupta A., Virdi A.: Effect of Single and Double Layer Antireflection Coating to Enhance Photovoltaic Efficiency of Silicon Solar. Journal of Nano- and Electronic Physics 9(2), 2017, 02001 [https://doi.org/10.21272/jnep.9(2).02001]. DOI: https://doi.org/10.21272/jnep.9(2).02001
[37] Shoewu O.: Effect of Absorber Layer Thickness and Band Gap on the Performance of CdTe/CdS/ZnO Multi-Junction Thin Film Solar Cell. International Journal of Advanced Trends in Technology Management and Applied Science 4(7), 2018, 1–26.
[38] Singh S., et al.: Nonlinear Optical Properties of Hexagonal Silicon Carbide. Applied Physics Letters 19, 1971, 53 [https://doi.org/10.1063/1.1653819]. DOI: https://doi.org/10.1063/1.1653819
[39] Sinha T., Verma L., Khare A.: Variations in Photovoltaic Parameters of CdTe/CdS Thin Film Solar Cells by Changing the Substrate for the Deposition of CdS Window Layer. Applied Physics A 126(11), 2020, 867 [https://doi.org/10.1007/s00339-020-04058-4]. DOI: https://doi.org/10.1007/s00339-020-04058-4
[40] Tinedert I. E., et al.: Design and Simulation of a High CdS/CdTe Solar Cell Efficiency. Optik 208, 2020, 164112 [https://doi.org/10.1016/j.ijleo.2019.164112]. DOI: https://doi.org/10.1016/j.ijleo.2019.164112
[41] Tsuji M., et al.: Characterization of CdS Thin-Film in High Efficient CdS/CdTe Solar Cells. Japanese Journal of Applied Physics 39(7R), 2000, 3902 [https://doi.org/10.1143/JJAP.39.3902]. DOI: https://doi.org/10.1143/JJAP.39.3902
[42] Zhang F., et al.: The Numerical CIS/CISSe Simulation Graded Band Gap Solar Cell Using SCAPS-1D Software. Journal of Nanoparticle Research 25(12), 2023, 256 [https://doi.org/10.1007/s11051-023-05906-z]. DOI: https://doi.org/10.1007/s11051-023-05906-z
Article Details
Abstract views: 253

