[1] Agoundedemba M., et al.: Improving FTO/ZnO/In₂S₃/CuInS₂/Mo Solar Cell Efficiency by Optimizing Thickness and Carrier ZnO, In₂S₃, and CuInS₂ Thin Film Concentrations Using Silvaco-Atlas Software. International Journal of Renewable Energy Development 12(6), 2023, 1131–1140 [https://doi.org/10.14710/ijred.2023.57800].
DOI: https://doi.org/10.14710/ijred.2023.57800
[2] Bond W.: Measurement of the Refractive Indices of Several Crystals. Journal of Applied Physics 36, 1965, 1674–1677 [https://doi.org/10.1063/1.1703106].
DOI: https://doi.org/10.1063/1.1703106
[3] Compaan A., et al.: High Efficiency, Magnetron Sputtered CdS/CdTe Solar Cells. Solar Energy 77(6), 2004, 815–822 [https://doi.org/10.1016/j.solener.2004.06.013].
DOI: https://doi.org/10.1016/j.solener.2004.06.013
[4] Debenham M.: Refractive Indices of Zinc Sulfide in the 0.405–13 μm Wavelength Range. Applied Optics 23, 1984, 2238–2239 [https://doi.org/10.1364/ao.23.002238].
DOI: https://doi.org/10.1364/AO.23.002238
[5] Devore J.: Refractive Indices of Rutile and Sphalerite. Journal of the Optical Society of America 41, 1951, 416–419 [https://doi.org/10.1364/JOSA.41.000416].
DOI: https://doi.org/10.1364/JOSA.41.000416
[6] Diadenchuk A., Kidalov V.: n-ZnO:Al/Porous-CdTe/p-CdTe Heterostructures as Photoelectric Converters. Nanosystemy, Nanomaterialy, Nanotekhnolohii 15(3), 2017, 487–494.
DOI: https://doi.org/10.15407/nnn.15.03.0487
[7] Diadenchuk A., Kidalov V.: Use of the Porous A3B5 Compounds for Supercapacitor Electrodes. Journal of Nano-& Electronic Physics 7(1), 2015, 01021-1–01021-4.
[8] Double Layer Anti Reflection Coatings. PV Education [https://www.pveducation.org/pvcdrom/design-of-silicon-cells/double-layer-anti-reflection-coatings] (available 26 Nov. 2024).
[9] Dyadenchuk A., Domina N., Oleksenko R.: Simulation of Solar Element Characteristics Based on Porous Silicon. IEEE 4th International Conference on Modern Electrical and Energy Systems – MEES, 2022, 1–4 [https://doi.org/10.1109/MEES58014.2022.10005773].
DOI: https://doi.org/10.1109/MEES58014.2022.10005773
[10] Dyadenchuk A., Kidalov V.: Films CdS Grown on Porous Si Substrate. Journal of Nano- & Electronic Physics 10(1), 2018, 01007 [https://doi.org/10.21272/jnep.10(1).01007].
DOI: https://doi.org/10.21272/jnep.10(1).01007
[11] Dyadenchuk A., Oleksenko R.: Simulation Photoconverters of Porous-Si/Si with Different Anti-Reflective Coatings. International Journal of Mathematics & Physics 14(2), 2023, 89–94 [https://doi.org/10.26577/ijmph.2023.v14.i2.010].
DOI: https://doi.org/10.26577/ijmph.2023.v14.i2.010
[12] Fardi H., Buny F.: Characterization and Modeling of CdS/CdTe Solar Cell Heterojunction Thin-Film for High Efficiency Performance. International Journal of Photoenergy 2013, 6 [https://doi.org/10.1155/2013/576952].
DOI: https://doi.org/10.1155/2013/576952
[13] Gajanayake G. K. U. P., et al.: Effect of CdTe Nucleation Layer on the CdS/CdTe Performance Thin Film Solar Cells. Journal of Materials Science: Materials in Electronics 34(6), 2023, 508 [https://doi.org/10.1007/s10854-023-09895-6].
DOI: https://doi.org/10.1007/s10854-023-09895-6
[14] Guminilovych R., et al.: Modeling of Chemical Surface Deposition (CSD) of CdS and CdSe Semiconductor Thin Films. Chemistry & Chemical Technology 9, 2015, 287–292 [https://doi.org/10.23939/chcht09.03.287].
DOI: https://doi.org/10.23939/chcht09.03.287
[15] Han J., et al.: Preparation and ZnS/CdS Bi-Layer Characterization for CdTe Solar Cell Application. Journal of Physics and Chemistry of Solids 74(12), 2013, 1879–1883 [https://doi.org/10.1016/j.jpcs.2013.08.004].
DOI: https://doi.org/10.1016/j.jpcs.2013.08.004
[16] Ilchuk G., et al.: Photosensitivity of n-CdS/p-CdTe Heterojunctions Obtained by Chemical Surface Deposition of CdS. Semiconductors 44, 2010, 318–320 [https://doi.org/10.1134/S1063782610030085].
DOI: https://doi.org/10.1134/S1063782610030085
[17] Jiang C., et al.: Simulation of Silicon Solar Cell Using PC1D. Advanced Materials Research 383, 2012, 7032–7036 [https://doi.org/10.4028/www.scientific.net/AMR.383-390.7032].
DOI: https://doi.org/10.4028/www.scientific.net/AMR.383-390.7032
[18] Kapadnis R., et al.: Cadmium Telluride/Cadmium Sulfide Thin Films Solar Cells: A Review. ES Energy & Environment 10(2), 2020, 3–12, [https://doi.org/10.30919/esee8c706].
DOI: https://doi.org/10.30919/esee8c706
[19] Khaledi P., Behboudnia M., Karimi M.: Optimization and Numerical Modeling of TCO/SnO₂/CdS/CdTe Solar Cells. International Journal of Optics, 2023, 7184080 [https://doi.org/10.1155/2023/7184080].
DOI: https://doi.org/10.1155/2023/7184080
[20] König T., et al.: Electrically Tunable Plasmonic Behavior of Nanocube-Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer. ACS Nano 8, 2014, 6182–6192 [https://doi.org/10.1021/nn501601e].
DOI: https://doi.org/10.1021/nn501601e
[21] Krishnaiah V., et al.: Optimizing ZnO/CdS/CdTe Bilayer Structures for Enhanced CdTe Solar Cell Efficiency: A Machine Learning Approach. MRS Advances 2024, 1–6 [https://doi.org/10.1557/s43580-024-00772-w].
DOI: https://doi.org/10.1557/s43580-024-00772-w
[22] Kuddus A., et al.: Enhancement of the CdS/CdTe Heterojunction Solar Cell Performance Using TiO₂/ZnO Bi-Layer ARC and V₂O₅ BSF Layers: A Simulation Approach. The European Physical Journal Applied Physics 92(2), 2020, 20901 [https://doi.org/10.1051/epjap/2020200213].
DOI: https://doi.org/10.1051/epjap/2020200213
[23] Lakmal A. A. I., et al.: Thermally Evaporated CdS Thin Films for CdS/CdTe Solar Cells: Effect of Substrate Temperature on CdS Layer. Materials Science and Engineering: B 273, 2021, 115406 [https://doi.org/10.1016/j.mseb.2021.115406].
DOI: https://doi.org/10.1016/j.mseb.2021.115406
[24] Lee J.: Comparison of CdS Films Deposited by Different Techniques: Effects on CdTe Solar Cell. Applied Surface Science 252(5), 2005, 1398–1403 [https://doi.org/10.1016/j.apsusc.2005.02.110].
DOI: https://doi.org/10.1016/j.apsusc.2005.02.110
[25] Li S., Li X., Zhao H.: Synthesis and Electrical Properties of P-Type CdTe Nanowires. Micro & Nano Letters 8(6), 2013, 308–310 [https://doi.org/10.1049/mnl.2013.0144].
DOI: https://doi.org/10.1049/mnl.2013.0144
[26] Malitson I.: Interspecimen Comparison of the Refractive Index of Fused Silica. Journal of the Optical Society of America 55, 1965, 1205–1208 [https://doi.org/10.1364/JOSA.55.001205].
DOI: https://doi.org/10.1364/JOSA.55.001205
[27] Matei E., et al.: Electrical Properties of Single CdTe Nanowires. Beilstein Journal of Nanotechnology 6(1), 2015, 444–450 [https://doi.org/10.3762/bjna6.45].
DOI: https://doi.org/10.3762/bjnano.6.45
[28] Matin M., et al.: A Study Towards the Possibility of Ultra Thin CdS/CdTe High Efficiency Solar Cells from Numerical Analysis. WSEAS Transactions on Environment and Development 6(8), 2010, 571–580.
DOI: https://doi.org/10.1155/2010/578580
[29] Mozaffari S.: Device Modeling and Performance Analysis of an All-Inorganic Lead-Free Ag₂BiI₅ Rudorffite-Based Solar Cell with AgSCN as HTL via GPVDM Simulation Software. Journal of Computational Electronics 2024, 1–13 [https://doi.org/10.1007/s10825-024-02157-6].
DOI: https://doi.org/10.1007/s10825-024-02157-6
[30] Olusola O., Madugu M., Dharmadasa I.: Investigating the Electronic Properties of Multi-Junction ZnS/CdS/CdTe Graded Bandgap Solar Cells. Materials Chemistry and Physics 191, 2017, 145–150 [https://doi.org/10.1016/j.matchemphys.2017.01.027].
DOI: https://doi.org/10.1016/j.matchemphys.2017.01.027
[31] Peña J., et al.: The ZnO-Reflectance Effect on the Heterojunction ITO/ZnO/CdS/CdTe. 38th IEEE Photovoltaic Specialists Conference, 2012, 002021–002023 [https://doi.org/10.1109/PVSC.2012.6317995].
DOI: https://doi.org/10.1109/PVSC.2012.6317995
[32] Politanskyi R., et al.: Simulation of Anti-Reflecting Dielectric Films by the Interference Matrix Method. Optical Materials 102, 2020, 109782 [https://doi.org/10.1016/j.optmat.2020.109782].
DOI: https://doi.org/10.1016/j.optmat.2020.109782
[33] Rios-Flores A., et al.: Procedure to Obtain Higher than 14% Efficiency Rate Thin Film CdS/CdTe Solar Cells Activated with HCF2Cl Gas. Solar Energy 86(2), 2012, 780–785 [https://doi.org/10.1016/j.solener.2011.12.002].
DOI: https://doi.org/10.1016/j.solener.2011.12.002
[34] Roy A., Majumdar A.: Optimization of CuO/CdTe/CdS/TiO₂ Solar Cell Efficiency: A Numerical Simulation Modeling. Optik 251, 2022, 168456 [https://doi.org/10.1016/j.ijleo.2021.168456].
DOI: https://doi.org/10.1016/j.ijleo.2021.168456
[35] Sahouane N., Zerga A.: Optimization of Antireflection Multilayer for Industrial Crystalline Silicon Solar Cells. Energy Procedia 44, 2014, 118–125 [https://doi.org/10.1016/j.egypro.2013.12.017].
DOI: https://doi.org/10.1016/j.egypro.2013.12.017
[36] Sharma R., Gupta A., Virdi A.: Effect of Single and Double Layer Antireflection Coating to Enhance Photovoltaic Efficiency of Silicon Solar. Journal of Nano- and Electronic Physics 9(2), 2017, 02001 [https://doi.org/10.21272/jnep.9(2).02001].
DOI: https://doi.org/10.21272/jnep.9(2).02001
[37] Shoewu O.: Effect of Absorber Layer Thickness and Band Gap on the Performance of CdTe/CdS/ZnO Multi-Junction Thin Film Solar Cell. International Journal of Advanced Trends in Technology Management and Applied Science 4(7), 2018, 1–26.
[38] Singh S., et al.: Nonlinear Optical Properties of Hexagonal Silicon Carbide. Applied Physics Letters 19, 1971, 53 [https://doi.org/10.1063/1.1653819].
DOI: https://doi.org/10.1063/1.1653819
[39] Sinha T., Verma L., Khare A.: Variations in Photovoltaic Parameters of CdTe/CdS Thin Film Solar Cells by Changing the Substrate for the Deposition of CdS Window Layer. Applied Physics A 126(11), 2020, 867 [https://doi.org/10.1007/s00339-020-04058-4].
DOI: https://doi.org/10.1007/s00339-020-04058-4
[40] Tinedert I. E., et al.: Design and Simulation of a High CdS/CdTe Solar Cell Efficiency. Optik 208, 2020, 164112 [https://doi.org/10.1016/j.ijleo.2019.164112].
DOI: https://doi.org/10.1016/j.ijleo.2019.164112
[41] Tsuji M., et al.: Characterization of CdS Thin-Film in High Efficient CdS/CdTe Solar Cells. Japanese Journal of Applied Physics 39(7R), 2000, 3902 [https://doi.org/10.1143/JJAP.39.3902].
DOI: https://doi.org/10.1143/JJAP.39.3902
[42] Zhang F., et al.: The Numerical CIS/CISSe Simulation Graded Band Gap Solar Cell Using SCAPS-1D Software. Journal of Nanoparticle Research 25(12), 2023, 256 [https://doi.org/10.1007/s11051-023-05906-z].
DOI: https://doi.org/10.1007/s11051-023-05906-z