Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The research is aimed at increasing the accuracy of forecasting the state of multi-zone thermal facilities. Such facilities include multi-room premises, multi-zone greenhouses, tunnel kilns for brick production, and others. The high inertia of such facilities reduces the effectiveness of "ad hoc control". Modern proactive control systems based on forecasting are mainly based on using neural network training. However, to forecast the state of a specific multi-zone thermal facility, training the network requires a very large dataset, which is difficult to create and use. A combined neuro-structural method for forecasting the state of multi-zone thermal facilities is proposed, in which the structure of the neural model reflects the structure of the mutual influence of the facility zones. The research of the method has shown the possibility of ensuring sufficiently high forecast accuracy with a smaller size of the training dataset.
Keywords:
References
[1] Armstrong J:. Extrapolation for Time-Series and Cross-Sectional Data. Armstrong J. S. (eds.): Principles of Forecasting. International Series in Operations Research & Management Science 30. Springer, Boston 2001 [http://doi.org/10.1007/978-0-306-47630-3_11]. DOI: https://doi.org/10.1007/978-0-306-47630-3_11
[2] Bisikalo O., et al.: Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis. Entropy 25(2), 2023, 184. DOI: https://doi.org/10.3390/e25020184
[3] Collopy F., Adya M., Armstrong J.: Expert Systems for Forecasting. Armstrong J. (eds.): Principles of Forecasting. International Series in Operations Research & Management Science 30. Springer, Boston, 2011 [http://doi.org/10.1007/978-0-306-47630-3_14]. DOI: https://doi.org/10.1007/978-0-306-47630-3_14
[4] Dias G. F., Kapetanios G.: Estimation and forecasting in vector autoregressive moving average models for rich datasets. Journal of Econometrics 202(1), 2018, 75–91. DOI: https://doi.org/10.1016/j.jeconom.2017.06.022
[5] Dubovoi V., et al.: Model-Oriented Training of Coordinators of the Decentralized Control System of Technological Facilities with Resource Interaction. IEEE Access 13, 2025, 13414–13426. DOI: https://doi.org/10.1109/ACCESS.2025.3528828
[6] Dubovoi V., et al.: Functional safety assessment of one-level coordination of distributed cyber-physical objects. Przegląd Elektrotechniczny 97(9), 2021, 38–41. DOI: https://doi.org/10.15199/48.2021.09.08
[7] Geysena D., et al.: Operational thermal load forecasting in district heating networks using machine learning and expert advice. 2017, arXiv:1710.06134v1.
[8] Gyeera T., Simons A., Stannett M.: Kalman filter based prediction and forecasting of cloud server KPIs. TechRxiv. May 19, 2021 [https://doi.org/10.36227/techrxiv.14583342.v1]. DOI: https://doi.org/10.36227/techrxiv.14583342
[9] Hasan M., Wathodkar G., Muia M.: ARMA Model Development and Analysis for Global Temperature Uncertainty. arXiv, 2023, 2303.02070v1. DOI: https://doi.org/10.3389/fspas.2023.1098345
[10] Hou P., et al.: Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia. Sustainability 15, 2023, 3675 [http://doi.org/10.3390/su15043675]. DOI: https://doi.org/10.3390/su15043675
[11] Hyndman R., et al.: Forecasting with Exponential Smoothing. Springer Berlin, Heidelberg 2008 [https://doi.org/10.1007/978-3-540-71918-2]. DOI: https://doi.org/10.1007/978-3-540-71918-2
[12] Kolobrodov V. G., Nguyen Q. A., Tymchik G. S.: The problems of designing coherent spectrum analyzers. Proc. of SPIE 9066, 2013. DOI: https://doi.org/10.1117/12.2049587
[13] Kukharchuk V. V., et al.: Information Conversion in Measuring Channels with Optoelectronic Sensors. Sensors 22(1), 2022, 271 [https://doi.org/10.3390/s22010271]. DOI: https://doi.org/10.3390/s22010271
[14] Ivanovski Z., Milenkovski A., Narasanov Z.: Time Series Forecasting Using a Moving Average Model for Extrapolation of Number of Tourist. UTMS Journal of Economics 9(2), 2018, 121–132.
[15] Thorsten J., et al.: Predicting structured objects with support vector machines. Communications of the ACM 52(11), 2024, 97–104 [https://doi.org/10.1145/1592761.1592783]. DOI: https://doi.org/10.1145/1592761.1592783
Article Details
Abstract views: 206

