[1] Armstrong J:. Extrapolation for Time-Series and Cross-Sectional Data. Armstrong J. S. (eds.): Principles of Forecasting. International Series in Operations Research & Management Science 30. Springer, Boston 2001 [http://doi.org/10.1007/978-0-306-47630-3_11].
DOI: https://doi.org/10.1007/978-0-306-47630-3_11
[2] Bisikalo O., et al.: Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis. Entropy 25(2), 2023, 184.
DOI: https://doi.org/10.3390/e25020184
[3] Collopy F., Adya M., Armstrong J.: Expert Systems for Forecasting. Armstrong J. (eds.): Principles of Forecasting. International Series in Operations Research & Management Science 30. Springer, Boston, 2011 [http://doi.org/10.1007/978-0-306-47630-3_14].
DOI: https://doi.org/10.1007/978-0-306-47630-3_14
[4] Dias G. F., Kapetanios G.: Estimation and forecasting in vector autoregressive moving average models for rich datasets. Journal of Econometrics 202(1), 2018, 75–91.
DOI: https://doi.org/10.1016/j.jeconom.2017.06.022
[5] Dubovoi V., et al.: Model-Oriented Training of Coordinators of the Decentralized Control System of Technological Facilities with Resource Interaction. IEEE Access 13, 2025, 13414–13426.
DOI: https://doi.org/10.1109/ACCESS.2025.3528828
[6] Dubovoi V., et al.: Functional safety assessment of one-level coordination of distributed cyber-physical objects. Przegląd Elektrotechniczny 97(9), 2021, 38–41.
DOI: https://doi.org/10.15199/48.2021.09.08
[7] Geysena D., et al.: Operational thermal load forecasting in district heating networks using machine learning and expert advice. 2017, arXiv:1710.06134v1.
[8] Gyeera T., Simons A., Stannett M.: Kalman filter based prediction and forecasting of cloud server KPIs. TechRxiv. May 19, 2021 [https://doi.org/10.36227/techrxiv.14583342.v1].
DOI: https://doi.org/10.36227/techrxiv.14583342
[9] Hasan M., Wathodkar G., Muia M.: ARMA Model Development and Analysis for Global Temperature Uncertainty. arXiv, 2023, 2303.02070v1.
DOI: https://doi.org/10.3389/fspas.2023.1098345
[10] Hou P., et al.: Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia. Sustainability 15, 2023, 3675 [http://doi.org/10.3390/su15043675].
DOI: https://doi.org/10.3390/su15043675
[11] Hyndman R., et al.: Forecasting with Exponential Smoothing. Springer Berlin, Heidelberg 2008 [https://doi.org/10.1007/978-3-540-71918-2].
DOI: https://doi.org/10.1007/978-3-540-71918-2
[12] Kolobrodov V. G., Nguyen Q. A., Tymchik G. S.: The problems of designing coherent spectrum analyzers. Proc. of SPIE 9066, 2013.
DOI: https://doi.org/10.1117/12.2049587
[13] Kukharchuk V. V., et al.: Information Conversion in Measuring Channels with Optoelectronic Sensors. Sensors 22(1), 2022, 271 [https://doi.org/10.3390/s22010271].
DOI: https://doi.org/10.3390/s22010271
[14] Ivanovski Z., Milenkovski A., Narasanov Z.: Time Series Forecasting Using a Moving Average Model for Extrapolation of Number of Tourist. UTMS Journal of Economics 9(2), 2018, 121–132.
[15] Thorsten J., et al.: Predicting structured objects with support vector machines. Communications of the ACM 52(11), 2024, 97–104 [https://doi.org/10.1145/1592761.1592783].
DOI: https://doi.org/10.1145/1592761.1592783