[1] Arafat M. Y., Alam M. M., Moh S.: Vision-Based Navigation Techniques for Unmanned Aerial Vehicles: Review and Challenges. Drones 7(2), 2023, 89 [https://doi.org/10.3390/drones7020089].
DOI: https://doi.org/10.3390/drones7020089
[2] Arai T., et al.: Estimation of Human Condition at Disaster Site Using Aerial Drone Images. Computer Vision and Pattern Recognition, Aug. 2023. arXiv, arxiv.org/abs/2308.04535.
DOI: https://doi.org/10.1109/ICCVW60793.2023.00408
[3] Bazarevsky V., et al.: BlazePose: On-device Real-time Body Pose tracking. 2020, arXiv preprint arXiv:2006.10204 [https://doi.org/10.48550/arXiv.2006.10204].
[4] Bezugla N., et al.: Fundamentals of Determination of the Biological Tissue Refractive Index by Ellipsoidal Reflector Method. Photonics, 11(9), 2024, 828 [https://doi.org/10.3390/photonics11090828].
DOI: https://doi.org/10.3390/photonics11090828
[5] Eisenbeiss H., et al.: A Mini Unmanned Aerial Vehicle (UAV): System Overview and Image Acquisition. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(5/W1), 2004, 1–7 [http://www.isprs.org/proceedings/xxxvi/5-w1/papers/11.pdf].
[6] Girshick R., et al.: Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, 580–587 [https://doi.org/10.1109/CVPR.2014.81].
DOI: https://doi.org/10.1109/CVPR.2014.81
[7] Khan A., et al.: A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artificial Intelligence Review 53, 2020, 5455–5516.
DOI: https://doi.org/10.1007/s10462-020-09825-6
[8] Lee W., et al.: Deep Neural Networks for Wild Fire Detection with Unmanned Aerial Vehicle. IEEE International Conference on Consumer Electronics (ICCE), 2017, 252–253 [https://doi.org/10.1109/ICCE.2017.7889305].
DOI: https://doi.org/10.1109/ICCE.2017.7889305
[9] Levshchanov S.: Application of Unmanned Aerial Vehicles in the Construction Industry. Technical Sciences and Technologies 2(36), 2024, 297–802 [https://doi.org/10.25140/2411-5363-2024-2(36)-297-302].
DOI: https://doi.org/10.25140/2411-5363-2024-2(36)-297-302
[10] Liu W., et al.: SSD: Single Shot MultiBox Detector. Computer Vision – ECCV 2016. Lecture Notes in Computer Science 9905, 2016, 21–37. [https://doi.org/10.1007/978-3-319-46448-0_2].
DOI: https://doi.org/10.1007/978-3-319-46448-0_2
[11] Lugaresi C., et al.: MediaPipe: A Framework for Building Perception Pipelines. 2019, arXiv preprint arXiv:1906.08172 [https://doi.org/10.48550/arXiv.2006.10204].
[12] Papyan N., et al.: AI-based Drone Assisted Human Rescue in Disaster Environments: Challenges and Opportunities. Computer Science – Sound 22, 2024, arXiv, arxiv.org/abs/2406.15875.
[13] Pérez M., et al.: Unmanned Aerial Vehicle (UAV) Path Planning and Control Assisted by Augmented Reality. International Journal of Production Research 61(1), 2023, 1–20.
[14] Sharma J., et al.: Deep Convolutional Neural Networks for Fire Detection in Images. 18th International Conference Engineering Applications of Neural Networks – EANN 2017, Athens, Greece, Aug. 2017, 25–27.
[15] Stelmakh N., et al.: Application of ResNet-152 Neural Networks to Analyze Images from UAV for Fire Detection. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(2), 77–82 [https://doi.org/10.35784/iapgos.5862].
DOI: https://doi.org/10.35784/iapgos.5862
[16] Villa T. F., et al.: An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements. Sensors 16(7), 2016, 1072 [https://doi.org/10.3390/s16071072].
DOI: https://doi.org/10.3390/s16071072
[17] Zhang L., et al.: Is Faster R-CNN Doing Well for Pedestrian Detection. 14th European Conference Computer Vision–ECCV 2016, Amsterdam, Netherlands, 11-14 Oct. 2016, 443–457.
DOI: https://doi.org/10.1007/978-3-319-46475-6_28