Object detection algorithm in a navigation system for a rescue drone
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This article focuses on improving object recognition algorithms for rescue drones, in particular, enhancing the methodology for classifying human poses by expanding the set of key body points and using more effective mathematical models. A methodology is proposed that analyzes 11 key body points, enabling the classification of human positions (standing, lying down, sitting, kneeling, bent) with greater accuracy. Additionally, a gesture recognition algorithm is proposed, detecting gestures such as arm-waving as a signal for help, which increases the effectiveness of rescue operations. The paper also considers the possibilities of implementing the system on the limited hardware resources of onboard UAV computers. Using geometric relationships between body points reduces computational costs without sacrificing accuracy, making the proposed model suitable for real-world use. The conducted research confirms that the improved system can automatically assess victims’ conditions, prioritize rescue efforts, and optimize drone navigation. In future work, it is planned to integrate the algorithms with drones’ multisensory systems and test them in real-world conditions.
Keywords:
References
[1] Arafat M. Y., Alam M. M., Moh S.: Vision-Based Navigation Techniques for Unmanned Aerial Vehicles: Review and Challenges. Drones 7(2), 2023, 89 [https://doi.org/10.3390/drones7020089]. DOI: https://doi.org/10.3390/drones7020089
[2] Arai T., et al.: Estimation of Human Condition at Disaster Site Using Aerial Drone Images. Computer Vision and Pattern Recognition, Aug. 2023. arXiv, arxiv.org/abs/2308.04535. DOI: https://doi.org/10.1109/ICCVW60793.2023.00408
[3] Bazarevsky V., et al.: BlazePose: On-device Real-time Body Pose tracking. 2020, arXiv preprint arXiv:2006.10204 [https://doi.org/10.48550/arXiv.2006.10204].
[4] Bezugla N., et al.: Fundamentals of Determination of the Biological Tissue Refractive Index by Ellipsoidal Reflector Method. Photonics, 11(9), 2024, 828 [https://doi.org/10.3390/photonics11090828]. DOI: https://doi.org/10.3390/photonics11090828
[5] Eisenbeiss H., et al.: A Mini Unmanned Aerial Vehicle (UAV): System Overview and Image Acquisition. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(5/W1), 2004, 1–7 [http://www.isprs.org/proceedings/xxxvi/5-w1/papers/11.pdf].
[6] Girshick R., et al.: Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, 580–587 [https://doi.org/10.1109/CVPR.2014.81]. DOI: https://doi.org/10.1109/CVPR.2014.81
[7] Khan A., et al.: A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artificial Intelligence Review 53, 2020, 5455–5516. DOI: https://doi.org/10.1007/s10462-020-09825-6
[8] Lee W., et al.: Deep Neural Networks for Wild Fire Detection with Unmanned Aerial Vehicle. IEEE International Conference on Consumer Electronics (ICCE), 2017, 252–253 [https://doi.org/10.1109/ICCE.2017.7889305]. DOI: https://doi.org/10.1109/ICCE.2017.7889305
[9] Levshchanov S.: Application of Unmanned Aerial Vehicles in the Construction Industry. Technical Sciences and Technologies 2(36), 2024, 297–802 [https://doi.org/10.25140/2411-5363-2024-2(36)-297-302]. DOI: https://doi.org/10.25140/2411-5363-2024-2(36)-297-302
[10] Liu W., et al.: SSD: Single Shot MultiBox Detector. Computer Vision – ECCV 2016. Lecture Notes in Computer Science 9905, 2016, 21–37. [https://doi.org/10.1007/978-3-319-46448-0_2]. DOI: https://doi.org/10.1007/978-3-319-46448-0_2
[11] Lugaresi C., et al.: MediaPipe: A Framework for Building Perception Pipelines. 2019, arXiv preprint arXiv:1906.08172 [https://doi.org/10.48550/arXiv.2006.10204].
[12] Papyan N., et al.: AI-based Drone Assisted Human Rescue in Disaster Environments: Challenges and Opportunities. Computer Science – Sound 22, 2024, arXiv, arxiv.org/abs/2406.15875.
[13] Pérez M., et al.: Unmanned Aerial Vehicle (UAV) Path Planning and Control Assisted by Augmented Reality. International Journal of Production Research 61(1), 2023, 1–20.
[14] Sharma J., et al.: Deep Convolutional Neural Networks for Fire Detection in Images. 18th International Conference Engineering Applications of Neural Networks – EANN 2017, Athens, Greece, Aug. 2017, 25–27.
[15] Stelmakh N., et al.: Application of ResNet-152 Neural Networks to Analyze Images from UAV for Fire Detection. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(2), 77–82 [https://doi.org/10.35784/iapgos.5862]. DOI: https://doi.org/10.35784/iapgos.5862
[16] Villa T. F., et al.: An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements. Sensors 16(7), 2016, 1072 [https://doi.org/10.3390/s16071072]. DOI: https://doi.org/10.3390/s16071072
[17] Zhang L., et al.: Is Faster R-CNN Doing Well for Pedestrian Detection. 14th European Conference Computer Vision–ECCV 2016, Amsterdam, Netherlands, 11-14 Oct. 2016, 443–457. DOI: https://doi.org/10.1007/978-3-319-46475-6_28
Article Details
Abstract views: 242

