[1] Azam F., et al.: Aircraft classification based on PCA and feature fusion techniques in convolutional neural network. IEEE Access 9, 2021, 161683–161694 [https://dx.doi.org/10.1109/ACCESS.2021.3132062].
DOI: https://doi.org/10.1109/ACCESS.2021.3132062
[2] Castilho H. M., Nascimento C. L., Loesch Vianna W. O.: Aircraft bleed valve fault classification using support vector machines and classification trees. Annual IEEE International Systems Conference – SysCon. IEEE, 2018 [https://doi.org/10.1109/SYSCON.2018.8369568].
DOI: https://doi.org/10.1109/SYSCON.2018.8369568
[3] C V A., P K.: Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2, 2023 [https://dx.doi.org/10.2139/ssrn.4485468].
DOI: https://doi.org/10.2139/ssrn.4485468
[4] Dӓstner K., et al.: Classification of military aircraft in real-time radar systems based on supervised machine learning with labelled ads-b data. Sensor Data Fusion: Trends, Solutions, Applications – SDF. IEEE, 2018 [https://dx.doi.org/10.1109/SDF.2018.8547077].
DOI: https://doi.org/10.1109/SDF.2018.8547077
[5] Elhanashi A., et al.: TeleStroke: real-time stroke detection with federated learning and YOLOv8 on edge devices. Journal of Real-Time Image Processing 21(4), 2024, 121 [https://dx.doi.org/10.1007/s11554-024-01500-1].
DOI: https://doi.org/10.1007/s11554-024-01500-1
[6] Gao K., et al.: Optimizing and evaluating swin transformer for aircraft classification: Analysis and generalizability of the mtarsi dataset. IEEE Access 10, 2022, 134427–134439 [https://doi.org/10.1109/ACCESS.2022.3231327].
DOI: https://doi.org/10.1109/ACCESS.2022.3231327
[7] Guo Q., Wang H., Xu F.: Scattering enhanced attention pyramid network for aircraft detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing 59(9), 2020, 7570–7587 [https://doi.org/10.1109/TGRS.2020.3027762].
DOI: https://doi.org/10.1109/TGRS.2020.3027762
[8] Guo Q., et al.: Aircraft target detection from spaceborne SAR image. IEEE International Geoscience and Remote Sensing Symposium –¬ IGARSS 2019. IEEE, 2019 [https://doi.org/10.1109/IGARSS.2019.8898548].
DOI: https://doi.org/10.1109/IGARSS.2019.8898548
[9] Hassan A., et al.: A deep learning framework for automatic airplane detection in remote sensing satellite images. IEEE Aerospace Conference. IEEE, 2019 [https://dx.doi.org/10.1109/AERO.2019.8741938].
DOI: https://doi.org/10.1109/AERO.2019.8741938
[10] He C., et al.: A component-based multi-layer parallel network for airplane detection in SAR imagery. Remote Sensing 10(7), 2018, 1016 [https://doi.org/10.3390/rs10071016].
DOI: https://doi.org/10.3390/rs10071016
[11] Kang Y., et al.: SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images. IEEE Transactions on Geoscience and Remote Sensing 60, 2021, 1–17 [https://doi.org/10.1109/TGRS.2021.3130899].
DOI: https://doi.org/10.1109/TGRS.2021.3130899
[12] Kang Y., et al.: ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing 61, 2023, 1–17 [https://dx.doi.org/10.1109/TGRS.2023.3236987].
DOI: https://doi.org/10.1109/TGRS.2023.3236987
[13] Khan Z., et al.: Deep learning improved YOLOv8 algorithm: Real-time precise instance segmentation of crown region orchard canopies in natural environment. Computers and Electronics in Agriculture 224, 2024, 109168 [https://doi.org/10.1016/j.compag.2024.109168].
DOI: https://doi.org/10.1016/j.compag.2024.109168
[14] Liu Z., Gao Y., Du Q.: Yolo-class: Detection and classification of aircraft targets in satellite remote sensing images based on yolo-extract. IEEE Access 11, 2023, 109179–109188 [https://doi.org/10.1109/ACCESS.2023.3321828].
DOI: https://doi.org/10.1109/ACCESS.2023.3321828
[15] Nie Y., Bian C., Li L.: Adap-EMD: Adaptive EMD for aircraft fine-grained classification in remote sensing. IEEE Geoscience and Remote Sensing Letters 19, 2022, 1–5 [https://doi.org/10.1109/LGRS.2022.3168581].
DOI: https://doi.org/10.1109/LGRS.2022.3168581
[16] Pandey S., Chen K-F., Dam E. B.: Comprehensive multimodal segmentation in medical imaging: Combining YOLOv8 with SAM and HQ-SAM models. IEEE/CVF International Conference on Computer Vision. 2023 [https://dx.doi.org/10.1109/ICCVW60793.2023.00273].
DOI: https://doi.org/10.1109/ICCVW60793.2023.00273
[17] Poojitha K., Nasreen A.: Aircraft recognition system using deep learning based efficientnet. International Journal of Computer Science and Engineering 14(5), 2023, 182–187 [https://dx.doi.org/10.21817/indjcse/2023/v14i5/231405025].
DOI: https://doi.org/10.21817/indjcse/2023/v14i5/231405025
[18] Sapkota R., Ahmed D., Karkee M.: Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments. Artificial Intelligence in Agriculture 13, 2024, 84–99 [https://doi.org/10.1016/j.aiia.2024.07.001].
DOI: https://doi.org/10.1016/j.aiia.2024.07.001
[19] Sun X., et al.: FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing 184, 2022, 116–130 [https://doi.org/10.1016/j.isprsjprs.2021.12.004].
DOI: https://doi.org/10.1016/j.isprsjprs.2021.12.004
[20] Sun X., et al.: SCAN: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing 60, 2022, 1–17 [https://doi.org/10.1109/TGRS.2022.3166174].
DOI: https://doi.org/10.1109/TGRS.2022.3166174
[21] Thai V.-P., et al.: Detection, tracking and classification of aircraft and drones in digital towers using machine learning on motion patterns. Integrated Communications, Navigation and Surveillance Conference – ICNS. IEEE, 2019 [https://doi.org/10.1109/ICNSURV.2019.8735240].
DOI: https://doi.org/10.1109/ICNSURV.2019.8735240
[22] Wang J., et al.: Integrating weighted feature fusion and the spatial attention module with convolutional neural networks for automatic aircraft detection from SAR images. Remote Sensing 13(5), 2021, 910 [https://dx.doi.org/10.3390/rs13050910].
DOI: https://doi.org/10.3390/rs13050910
[23] Wang W., et al.: Aircraft target classification for conventional narrow-band radar with multi-wave gates sparse echo data. Remote Sensing 11(22), 2019, 2700 [https://dx.doi.org/10.3390/rs11222700].
DOI: https://doi.org/10.3390/rs11222700
[24] Wang X., et al.: Aircraft target interpretation based on SAR images. Applied Sciences 13(18), 2023, 10023 [https://doi.org/10.3390/app131810023].
DOI: https://doi.org/10.3390/app131810023
[25] Wang X., et al.: SAR Image Aircraft Target Recognition Based on Improved YOLOv5. Applied Sciences 13(10), 2023, 6160 [https://doi.org/10.3390/app13106160].
DOI: https://doi.org/10.3390/app13106160
[26] Yang T., et al.: An approach for plant leaf image segmentation based on YOLOV8 and the improved DEEPLABV3+. Plants 12(19), 2023, 3438 [https://doi.org/10.3390/plants12193438].
DOI: https://doi.org/10.3390/plants12193438
[27] Yue B., et al.: MS-Net: A Multi-modal Self-supervised Network for Fine-Grained Classification of Aircraft in SAR Images. arXiv preprint arXiv:2308.14613, 2023 [https://dx.doi.org/10.48550/arXiv.2308.14613].
[28] Zhao Q., Du X., Lu Y.: Aircraft target classification based on CNN. IEEE 11th Sensor Array and Multichannel Signal Processing Workshop – SAM. IEEE, 2020 [https://doi.org/10.1109/SAM48682.2020.9104254].
DOI: https://doi.org/10.1109/SAM48682.2020.9104254
[29] Zhao Y., et al.: Pyramid attention dilated network for aircraft detection in SAR images. IEEE Geoscience and Remote Sensing Letters 18(4), 2020, 662–666 [https://doi.org/10.1109/LGRS.2020.2981255].
DOI: https://doi.org/10.1109/LGRS.2020.2981255