Optimization of fiber-optic sensor performance in space environments
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
m.makhanbetuly@satbayev.university
a.nazarova@satbayev.university
k.yssyraiyl@satbayev.university
Abstract
This article explores mathematical modeling strategies aimed at developing advanced stabilization techniques for fiber-optic sensors (FOS) used in space infrastructure. These sensors operate in extreme environments characterized by significant temperature fluctuations, high radiation exposure, and continuous mechanical vibrations, all of which can impact their performance. To address these challenges, this study proposes protective solutions, optimized design enhancements, and the integration of new system components to improve sensor durability and measurement precision. Numerical simulations validate the effectiveness of these solutions in maintaining sensor functionality during long-duration space missions. Additionally, the improved monitoring and control methodologies developed in this research contribute to enhanced operational efficiency and long-term sustainability in space applications. Beyond aerospace, these techniques are also applicable to harsh environments such as deep-sea exploration and underground mining, where extreme conditions demand highly resilient sensing technologies. The continued evolution of fiber-optic technologies supports the advancement of sensor systems across a wide range of industrial and scientific applications.
Keywords:
References
[1] Abdykadyrov A., et al.: Optimization of Distributed Acoustic Sensors Based on Fiber Optic Technologies. Eastern-European Journal of Enterprise Technologies, 2024 [https://doi.org/10.15587/1729-4061.2024.313455]. DOI: https://doi.org/10.15587/1729-4061.2024.313455
[2] Chen B., et al.: Optical Fiber Sensors in Infrastructure Monitoring: A Comprehensive Review. Intelligent Transportation Infrastructure 2, 2023, liad018 [https://doi.org/10.1093/iti/liad018]. DOI: https://doi.org/10.1093/iti/liad018
[3] Drljača B. et al.: Application of the Power Flow Equation in Modeling Bandwidth in Polymer Optical Fibers: A Review. Optical and Quantum Electronics 56(4), 2024, 547 [https://doi.org/10.1007/s11082-023-06206-5]. DOI: https://doi.org/10.1007/s11082-023-06206-5
[4] Drljača B., et al.: Investigation of Bandwidth in Multimode W-Type Microstructured Plastic Optical Fibers. Optik 271, 2022, 170207 [https://doi.org/10.1016/j.ijleo.2022.170207]. DOI: https://doi.org/10.1016/j.ijleo.2022.170207
[5] Dziuba-Kozieł M., et al.: Method of Automatic Calibration and Measurement of the Light Polarization Plane Rotation with Tilted Fibre Bragg Grating and Discrete Wavelet Transform Usage. Advances in Science and Technology Research Journal 19(1), 2025, 165–177. DOI: https://doi.org/10.12913/22998624/194890
[6] Fidanboylu K., et al.: Fiber Optic Sensors and Their Applications. 5th International Advanced Technologies Symposium – IATS’09, May 2009. Karabuk, Turkey.
[7] Harasim D.: Tilted Fiber Bragg Grating Sensors for Refractive Index Measurements of Liquid Solutions. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12(1), 2022, 24–27. DOI: https://doi.org/10.35784/iapgos.2882
[8] Hossain A., Bhuiyan S. H.: Issues of Connectivity, Durability, and Reliability of Sensors and Their Applications. Comprehensive Materials Processing 13, 2014, 121–148. DOI: https://doi.org/10.1016/B978-0-08-096532-1.01320-0
[9] Huang L., et al.: Injury Monitoring of Underground Structure Based on Optical Fiber Sensor. 3rd International Symposium on Sensor Technology and Control – ISSTC. IEEE, 2024, 329–334. DOI: https://doi.org/10.1109/ISSTC63573.2024.10824165
[10] Huang L., et al.: Damage Monitoring of Reinforced Concrete Slabs Utilizing Distributed Fiber Sensing Technology. SSRN, 4946103.
[11] Kabdoldina A., et al.: Development of the Design and Technology for Manufacturing a Combined Fiber-Optic Sensor Used for Extreme Operating Conditions. Eastern-European Journal of Enterprise Technologies 5(119), 2022, 34–43 [https://doi.org/10.15587/1729-4061.2022.266359]. DOI: https://doi.org/10.15587/1729-4061.2022.266359
[12] Kalizhanova A., et al.: Sensor Systems for Measuring Force and Temperature with Fiber-Optic Bragg Gratings Embedded in Composite Materials. Journal of Composites Science 8(8), 2024, 321 [https://doi.org/10.3390/jcs8080321]. DOI: https://doi.org/10.3390/jcs8080321
[13] Kalizhanova A., et al.: Simulation of a Fiber-Optic Bragg Sensor with a Tilted Grid. IEEE Instrumentation & Measurement Magazine 27(4), 2024, 67–75. DOI: https://doi.org/10.1109/MIM.2024.10540401
[14] Kashaganova G., et al.: Design of a Fiber Temperature and Strain Sensor Model Using a Fiber Bragg Grating to Monitor Road Surface Conditions. Inventions 9(5), 2024 100 [https://doi.org/10.3390/inventions9050100]. DOI: https://doi.org/10.3390/inventions9050100
[15] Khabay A., et al.: Improvement of Fiber Optic Sensor Measurement Methods for Temperature and Humidity Measurement in Microelectronic Circuits. Eastern-European Journal of Enterprise Technologies 5(129), 2024, 36–44 [https://doi.org/10.15587/1729-4061.2024.306711]. DOI: https://doi.org/10.15587/1729-4061.2024.306711
[16] Kiesewetter D., et al.: Measurement of High-Speed Deformations Using Fiber Bragg Gratings. Proceedings of the 2022 International Conference on Electrical Engineering and Photonics – EexPolytech 2022. IEEE, 2022, 324–327 [https://doi.org/10.1109/EexPolytech56308.2022.9950795]. DOI: https://doi.org/10.1109/EExPolytech56308.2022.9950795
[17] Kisała P., et al.: Numerical Study of the Possibility of Using Adhesive Joints for Indirect Measurements for Stress Distribution. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(2), 2024, 51–55. DOI: https://doi.org/10.35784/iapgos.5987
[18] Kisała P., et al.: Elongation Determination Using Finite Element and Boundary Element Method. International Journal of Electronics and Telecommunications 61(4), 2015, 389–394 [https://doi.org/10.2478/eletel-2015-0051]. DOI: https://doi.org/10.2478/eletel-2015-0051
[19] Kuttybayeva A., et al.: Investigation of a Fiber Optic Laser Sensor with Grating Resonator Using Mirrors. Conference of Young Researchers in Electrical and Electronic Engineering – ElCon. IEEE, 2024, 709–711 [https://doi.org/10.1109/ElCon61730.2024.10468264]. DOI: https://doi.org/10.1109/ElCon61730.2024.10468264
[20] McKenzie I., et al.: Fiber Optic Sensing in Spacecraft Engineering: An Historical Perspective from the European Space Agency. Frontiers in Physics 9, 2021 [https://doi.org/10.3389/fphy.2021.719441]. DOI: https://doi.org/10.3389/fphy.2021.719441
[21] Mikhailov P., et al.: Eastern-European Journal of Enterprise Technologies, 5(5 (113), 2021, 80–89 [https://doi.org/10.15587/1729-4061.2021.242995]. DOI: https://doi.org/10.15587/1729-4061.2021.242995
[22] Rovera A., et al.: Fiber Optic Sensors for Harsh and High Radiation Environments in Aerospace Applications. Sensors 23, 2023, 2512 [https://doi.org/10.3390/s23052512]. DOI: https://doi.org/10.3390/s23052512
[23] Sekenov B., et al.: Fiber-Optic Temperature Sensors for Monitoring the Influence of the Space Environment on Nanosatellites: A Review. Tuleshov A., Jomartov A., Ceccarelli M. (eds): Advances in Asian Mechanism and Machine Science. Asian MMS 2024. Mechanisms and Machine Science 167. Springer, Cham 2024 [https://doi.org/10.1007/978-3-031-67569-0_42]. DOI: https://doi.org/10.1007/978-3-031-67569-0_42
[24] Smailov N., et al.: Fiber Laser-Based Two-Wavelength Sensors for Detecting Temperature and Strain on Concrete Structures. International Journal of Innovative Research and Scientific Studies 7(4), 2024, 1693–1710 [https://doi.org/10.53894/ijirss.v7i4.3481]. DOI: https://doi.org/10.53894/ijirss.v7i4.3481
[25] Smailov N., et al.: Simulation and Measurement of Strain Waveform under Vibration Using Fiber Bragg Gratings. Sensors 24(19), 2024, 6194 [https://doi.org/10.3390/s24196194]. DOI: https://doi.org/10.3390/s24196194
[26] Utreras A. J., et al.: Optical Switching Technologies: Problems and Proposed Solution. Proc. SPIE 9816, 2015. DOI: https://doi.org/10.1117/12.2229342
[27] Wójcik W., et al.: Analysis of the Possibilities for Using a Uniform Bragg Grating in a Tunable Dispersion Compensator. International Journal of Electronics and Telecommunications 61(4), 2015, 381–387. DOI: https://doi.org/10.2478/eletel-2015-0050
[28] Wójcik W., et al.: Monitoring of the Road Surface Using a Fiber Sensor Based on a Fiber Bragg Grid. Proc. SPIE 13400, 2024. DOI: https://doi.org/10.1117/12.3054879
Article Details
Abstract views: 343

